Superfluid-insulator transition of a Bose-Einstein condensation in a periodic potential and its interference pattern

Osaka-City-University, Japan M. Kobayashi and M. Tsubota

- **Introduction**
- Model: Gross-Pitaevskii equation
- Pure periodic potential
- Periodic and trapping potential

1, Introduction

Superfluid-Mott insulator transition of trapped alkali atomic BEC in an optical lattice potential

Greiner *et. al.* Nature **415** 39 (2002)

Potential depth V_0

Disappearance of the long-range coherence by the deep periodic potential: Superfluid-Mott insulator transition

Summary of this work

- **We discuss this system by using the Gross-Pitaevskii (GP) equation with a periodic potential.**
- **Since the GP equation assumes the BEC, it is impossible to discuss the Mott insulator phase.**
- **However the GP equation gives the detailed structure of the amplitude and the phase of the BEC.**
- **Changing the potential depth, we investigate what happens to the BEC.**

2, Model: the GP equation

$$
i\hbar \frac{\partial}{\partial t} \Phi(x,t) = \left[-\frac{\hbar^2}{2m} \nabla^2 - \mu + V(x) + g |\Phi(x,t)|^2 \right] \Phi(x,t)
$$

$$
\Phi(x,t): \text{Macroscopic wave function of BEC}
$$

V(x): External potential
g: Chemical potential
g: Coupling constant

Numerical calculation of this equation about twodimensional system

3,Pure periodic potential

$$
V(x) = -V_0 \cos^2 (Kx) \cos^2 (Ky)
$$

We look for the ground state by introducing the dissipative term.

$$
(i - \gamma)\hbar \frac{\partial}{\partial t} \Phi(x, t) = \left[-\frac{\hbar^2}{2m} \nabla^2 - \mu + V(x) + g |\Phi(x, t)|^2 \right] \Phi(x, t)
$$

Ground state

$$
E_R = \frac{\hbar^2 K^2}{\pi^2 m}
$$

gK²/\pi²E_R = 1

$$
\iint_{1-\text{site}} |\Phi(x)|^2 dx = 1
$$

 $|\Phi|$

Potential

$$
V(x) = -V_0 \cos^2 (Kx) \cos^2 (Ky)
$$

$$
\frac{V_0}{|V_0/E_R = 5}
$$

Localization of the amplitude

The phase of the ground state

Localization of the phase: breaking of the long-range correlation

Lowest excitation

2

100

 V_{Ω}

4

 $\boldsymbol{\mu}$ \mathbf{s}°

6

we st

8

10

Localization of the phase⇒**Finite excitation energy: breaking** ⁰ **superfluidity**

Energy gap of Mott-insulator

A local interference pattern by the potential gradient

 ΔE : Energy difference

Greiner *et. al.* Nature **415** 39 (2002)

A energy gap is observed in Mott insulator phase \Rightarrow **Is there any relation to the excitation energy gap given by Hartree-Fock-Bogoliubov equation?**

4, Periodic and trapping potential

$$
V(x) = -V_0 \cos^2 (Kx) \cos^2 (Ky) + \alpha_T (x^2 + y^2)
$$

$$
E_R = \frac{\hbar^2 K^2}{\pi^2 m}
$$

$$
gK^2 / \pi^2 E_R = 1
$$

$$
V_0 / E_R = 5
$$

$$
\frac{\pi^2 \alpha_T}{K^2 E_R} = 1
$$

Ground state

 V_0 / $E_R = 5$

 $V_0 / E_R = 50$ V_0

 V_0 / E_R = 75

The phase of the ground state

The localization of the phase

 π

Even after removing the trapping potential, the localized wave function does not expand but oscillate.

Removing the combined potential

$$
E_R = \frac{\hbar^2 K^2}{\pi^2 m}
$$

$$
gK^2 / \pi^2 E_R = 1
$$

 $V_0 / E_R = 50$ $V_0 / E_R = 75$ $V_0 / E_R = 120$

At the deep periodic potential, the interference pattern disappears.

Conclusions

Using the GP equation, we find the signals concerned with the superfluid–insulator transition.

- **In the periodic potential, the phase of ground state localizes in each site and the energy gap appears in the lowest excitation.**
- **After removing only the trapping potential, the localized wave function does not expand but oscillate in each site.**
- **After removing the combined potential, the localized wave function does not make interference pattern.**