Superfluid-insulator transition of a Bose-Einstein condensation in a periodic potential and its interference pattern

Osaka-City-University, Japan M. Kobayashi and M. Tsubota

- Introduction
- Model: Gross-Pitaevskii equation
- Pure periodic potential
- Periodic and trapping potential

1, Introduction

Superfluid-Mott insulator transition of trapped alkali atomic BEC in an optical lattice potential

Greiner et. al. Nature 415 39 (2002)

Potential depth V_0

Disappearance of the long-range coherence by the deep periodic potential: Superfluid-Mott insulator transition

Summary of this work

- We discuss this system by using the Gross-Pitaevskii (GP) equation with a periodic potential.
- Since the GP equation assumes the BEC, it is impossible to discuss the Mott insulator phase.
- However the GP equation gives the detailed structure of the amplitude and the phase of the BEC.
- Changing the potential depth, we investigate what happens to the BEC.

2, Model: the GP equation

$$i\hbar \frac{\partial}{\partial t} \Phi(\mathbf{x}, t) = \left[-\frac{\hbar^2}{2m} \nabla^2 - \mu + V(\mathbf{x}) + g |\Phi(\mathbf{x}, t)|^2 \right] \Phi(\mathbf{x}, t)$$

$$\Phi(\mathbf{x}, t) : \text{Macroscopic wave function of BEC}$$

$$V(\mathbf{x}) : \text{External potential}$$

$$\mu : \text{Chemical potential}$$

$$g : \text{Coupling constant}$$

Numerical calculation of this equation about twodimensional system

3,Pure periodic potential

$$V(\mathbf{x}) = -V_0 \cos^2(Kx) \cos^2(Ky)$$

We look for the ground state by introducing the dissipative term.

$$(\mathbf{i} - \gamma)\hbar \frac{\partial}{\partial t} \Phi(\mathbf{x}, t) = \left[-\frac{\hbar^2}{2m} \nabla^2 - \mu + V(\mathbf{x}) + g |\Phi(\mathbf{x}, t)|^2 \right] \Phi(\mathbf{x}, t)$$

Ground state

$$E_R = \frac{\hbar^2 K^2}{\pi^2 m}$$
$$gK^2 / \pi^2 E_R = 1$$
$$\iint_{1-\text{site}} |\Phi(\mathbf{x})|^2 \, \mathrm{d}\mathbf{x} = 1$$

Potential
$$V(\mathbf{x}) = -V_0 \cos^2(Kx) \cos^2(Ky)$$

Localization of the amplitude

The phase of the ground state

Localization of the phase: breaking of the long-range correlation

Lowest excitation

10

8

2

0

0

50

100

 V_0

150

200

ħω_{lowest}

$$\Phi(\mathbf{x}) \rightarrow \Phi(\mathbf{x}) + \varphi(\mathbf{x}), \ \varphi(\mathbf{x}) = u(\mathbf{x})e^{-i\omega t} + v^*(\mathbf{x})e^{i\omega t}$$

Localization of the phase□□⇒□Finite excitation energy: breaking superfluidity

Energy gap of Mott-insulator

A local interference pattern by the potential gradient

 ΔE : Energy difference

Greiner et. al. Nature 415 39 (2002)

A energy gap is observed in Mott insulator phase ⇒Is there any relation to the excitation energy gap given by Hartree-Fock-Bogoliubov equation?

4, Periodic and trapping potential

$$V(x) = -V_0 \cos^2(Kx) \cos^2(Ky) + \alpha_T (x^2 + y^2)$$

$$E_R = \frac{\hbar^2 K^2}{\pi^2 m}$$
$$gK^2 / \pi^2 E_R = 1$$

$$\frac{V_0 / E_R = 5}{\frac{\pi^2 \alpha_T}{K^2 E_R} = 1}$$

Ground state

 $V_0 / E_R = 5$

 $V_0 / E_R = 50$

 $V_0 / E_R = 75$

The phase of the ground state

The localization of the phase

 π

Even after removing the trapping potential, the localized wave function does not expand but oscillate.

Removing the combined potential

$$E_R = \frac{\hbar^2 K^2}{\pi^2 m}$$
$$gK^2 / \pi^2 E_R = 1$$

 $V_0 / E_R = 50$ $V_0 / E_R = 75$

 $V_0 / E_R = 120$

At the deep periodic potential, the interference pattern disappears.

Conclusions

Using the GP equation, we find the signals concerned with the superfluid-insulator transition.

- In the periodic potential, the phase of ground state localizes in each site and the energy gap appears in the lowest excitation.
- After removing only the trapping potential, the localized wave function does not expand but oscillate in each site.
- After removing the combined potential, the localized wave function does not make interference pattern.