Gross-Pitaevskii方程式による 超流動乱流のエネルギースペクトル

大阪市立大学理学部物理学科 小林未知数·坪田誠 1. イントロダクション 2. 研究目的 3. モデル 4. 計算結果 今後の課題 5 まとめ 6.

超流動乱流とは?

⁴Heがボース・アインシュタイ ン凝縮を起こして、同時に粘 性のない振る舞い(超流動)を する

超流動のダイナミクス:二流体モデル $ho_{
m s},
ho_{
m n}$ の温度変化 0.8 $\rho = \rho_{\rm s} + \rho_{\rm n}$ 0.6 *ρ*: 全流体 $\rho_{
m s}/
ho$ $\rho_{\rm n}/\rho$ 0.4 $ho_{
m s}:$ 超流体(エントロピー、粘性なし) 0.2 $ho_{
m n}:$ 常流体(エントロピー、粘性あり) Ω 0.5 1.5 2.5 0 2 T[K]

二流体モデルを特徴付ける現象:熱対向流

超流体⇒高温側へ 常流体⇒低温側へ

二流体が反対方向に流れる ⇒非常に大きな熱伝導度

相対速度がある値を超えると・・

二流体の相対速度がある値を超 えると、今まで散逸を伴わなかっ た熱対向流に散逸が生じる

Feynman

この散逸こそ超流体中の循環が量子化された 量子渦のタングル状態: 超流動乱流状態であ る! (1955) Vinen

・超流動⁴Heにおける量子化された循環Ⅲ= h/ mを観 測: <u>量子渦の発見</u>

•タングル状態の量子渦と常流体との摩擦である相互 摩擦力(mutual friction)を観測: 超流動乱流の発見 (1957)

量子渦の特徴

・全ての量子渦はいたるところで同じ循環 $\square \square \phi v_s \cdot ds = nh/m$ を持つ(実際にはn[]2 の渦は不安定)

・粘性による渦の拡散がない:安定に渦 が存在する

•渦芯のサイズは数Å:非常に微視的で理想的な渦糸である

数値シミュレーションによる熱対向流中の量子渦糸タングルの裏付け

渦糸近似:古典流体では近似で あるが超流動ではrealisticとなる

⇒渦糸近似を用いて量子渦のダ イナミクスを計算し、超流動乱流 における様々な物理量の実験と の定量的な一致を得た(Schwarz 1988)

⇒超流動乱流⇔渦糸タングルという描像の裏付け

熱対向流を用いて膨大な超流動乱流の研究が理論的、実験的に行われた

しかし

熱対向流中の超流動乱流は超流動に固有の現象であり、古典 乱流との対応が全くない

⇒古典乱流と超流動乱流の関係は全く謎のままであった!

J. Maurer and P. Tabeling, Europhys. Lett. 43 (1), 29

超流動乱流と古典乱流の関係 は?

J. Maurer and P. Tabeling, Europhys. Lett. 43 (1), 29 (1998)

S. R. Stalp, L. Skrbek, and R. J. Donnelly, Phys. Rev. Lett. 82, 4831 (1999)

T>1 Kでの超流動乱流中において古典乱流の統計則 であるKolmogorov則が観測された

⇒超流動乱流と古典乱流の類似性が観測された

慣性領域ではエネルギーが散逸されることなく、系の詳細 に依存しないスケール普遍性を持ち、エネルギースペクト ルがKolmogorov則で与えられる

 $E(k) = C\epsilon^{2/3}k^{-5/3} \ (C \sim 1)$

│ *k*:波数 □:エネルギー散逸率 │ *C*:Kolmogorov定数

高温での超流動乱流の古典乱流との類似⇒古 典乱流のように振舞う常流体と量子渦との間に 相互摩擦力(mutual friction)が働くことによっ

て起こる

W. F. Vinen, Phys. Rev. B 61, 1410 (2000)

Navier-Stokes方程式の数値解 析(核融合研木田重雄氏)

ー様等方乱流中の低圧力旋回渦の中心 軸と芯領域の可視化

古典乱流と渦

格子乱流

カルマン渦

古典乱流においても渦

は重要な役割を果たす

Kolmogorov則と Richardsonカスケード

エネルギー注入によって作られた 大きな渦(渦度集中部)が小さな 渦へ分裂し、エネルギー散逸領 域にて散逸する:渦のRichardson カスケード

古典乱流における渦

再び超流動における渦

高温

温

低

粒子性が顕著

古典流体から 量子流体へ

波動性が現れる (物質波)

個々の波が全て重なって巨視的波動関数を作る(ボース・アインシュタイン凝縮)

巨視的波動関数の時間発展: Gross-Pitaevskii方程式

Gross-Pitaevskii(GP)方程式
i
$$\hbar \frac{\partial \Phi}{\partial t} = \left[-\frac{\hbar^2}{2m} \nabla^2 - \mu + g |\Phi|^2 \right] \Phi$$

 Φ : 巨視的波動関数
 μ : 化学ポテンシャル
 g : 粒子間斥力相互作用の結合定数
巨視的波動関数 $\Phi = |\Phi| \exp(i\theta)$
密度 $\rho = |\Phi|^2$
流体の速度場 $v = \hbar/m \nabla \theta$

渦芯のサイズ(回復長) $\xi = 1/\sqrt{2mg\rho}$

波動関数の位相欠陥

位相欠陥のみで速度場 は回転する

•循環の量子化
$$\oint \vec{v} \cdot ds = \frac{2\pi\hbar}{m}$$

・渦は安定

•渦は端を持たない(渦輪で存在)

•渦芯は回復長 □□程度であり、絶 対象 強ロより小さいスケールでの 者 ぬ おお 敵 放送。

 $\xi = \hbar / \sqrt{2mg
ho}$

超流動乱流の構成要素は安定で循 環のそろった量子渦

古典流体の渦のよけいな自由度を 取り除いた<mark>渦のskeleton</mark>

絶対零度近傍の 超流動乱流は償 性領域における Kolmogorov則 2Richardson7 スケードの関係 を明らかにする 理想系になるか もしれない

極低温の超流動乱流:過去の計算1

T. Araki, M. Tsubota and S. K. Nemirovskii, Phys. Rev. Lett. 89, 145301 (2002) 渦糸が作る速度場をビオ・サバールの定理を用いて求め、そこから

渦糸のダイナミクスを計算する(初期状態:Taylor-Green-flow)。

$$egin{aligned} &oldsymbol{v}_{\mathrm{s}}(oldsymbol{r}) = rac{\kappa}{4\pi} \int \ rac{(oldsymbol{s}-oldsymbol{r}) imes \mathrm{d}oldsymbol{s}}{|oldsymbol{s}-oldsymbol{r}|^3} \ &rac{\mathrm{d}oldsymbol{s}}{\mathrm{d}t} = oldsymbol{v}(oldsymbol{s}) \end{aligned}$$

S r r

超流動乱流

時間発展の途中でエネルギースペクトルがKolmogorov則を示 すが、その後音波放出の圧縮性効果が顕著になることでスペク トルはKolmogorov則から外れてゆく。

- Gross-Pitaevskii方程式を用いて絶対零度の超流動乱流のダイナミクスを調べる
- Gross-Pitaevskii方程式に音波のみを散逸
 させる散逸項を導入し、音波の影響を消す

計算方法:スペクトル法 Gross-Pitaevskii方程式のフーリエ変換

 $[\mathbf{i} - \gamma(k)]\frac{\partial\Phi(k)}{\partial t} = \left[(k^2 - \mu)\Phi(k) + \frac{g}{V^2}\sum \Phi(k_1)\Phi^*(k_2)\Phi(k - k_1 + k_2)\right]$

 $\gamma(k) = \gamma_0 \theta(k - 2\pi/\xi)$:回復長 ξ より短いスケールで効く散逸

渦の再結合

□₀=0 のときに現れる細かい構造(音波)が□₀=1では消えてい

波数に依存しない散逸は音波のみならず渦まで散逸 させる⇒渦のダイナミクスを調べるには不適当

$$E = \int dx \, \Phi(x)^* [-\nabla^2 + g/2 |\Phi(x)|^2] \Phi(x)$$

$$\triangleq x \neq n \neq -$$

$$E_{int} = g/2 \int dx \, |\Phi(x)|^4 \exists E f(E \exists x \neq n \neq -$$

$$E_q = \int dx \, [\nabla |\Phi(x)|]^2 \exists f = x \neq n \neq -$$

$$E_{kin} = \int dx \, [|\Phi(x)| \nabla \theta(x)]^2 \exists f = x \neq n \neq -$$

$$E_{kin} = \int dx \, [|\Phi(x)| \nabla \theta(x)]^2 \exists f = x \neq n \neq -$$

$$E_{kin} = \int dx \, [|\Phi(x)| \nabla \theta(x)]^2 \exists f = x \neq n \neq -$$

$$E_{kin} = \int dx \, [|\Phi(x)| \nabla \theta(x)]^2 \exists f = 0$$

$$f = \int dx \, [|\Phi(x)| \nabla \theta(x)]^2 = 0$$

$$E_{kin} \partial f = 0$$

$$f = \int dx \, [|\Phi(x)| \nabla \theta(x)]^2 = 0$$

$$f = \int dx \, [|\Phi(x)| \nabla \theta(x)]^2 = 0$$

$$F_{kin} \partial f = 0$$

$$F_{kin} = E_{kin}^i + E_{kin}^c$$

$$F_{kin} = E_{kin}^i + E_{kin}^c$$

職約(□0=1)となし(□0=0)との比較

□₀=1の場合、エネルギー散逸率は4 < t <10でほぼ一定となるのに 対し、□₀=0では落ち着かずに時には負になることもある →音波の運動エネルギーが渦の運動エネルギーへと逆流している

0000(0,=1)となし(0,=0)との比較

$$E_{\rm kin}^{\rm i} = \int \mathrm{d}k \; E_{\rm kin}^{\rm i}(k)$$

 $E_{
m kin}^{
m i}(k) \propto k^{-\eta}$ (慣性領域)

[0, -1]

エネルギーが散逸しないスケール □k < k < 2 Ⅲ/ Ⅲ(0.20 < k < 6.3) を慣性領域として定義する

散逸がないとKolmogorov則との一致は短くなる⇒音波の影響が 無視できない

大きなスケールからエネルギーを注入することにより、定常乱流をつくることができる:古典乱流とのより深い関係を調べることができる。

散逸のない通常のGross-Pitaevskii方程式との 最も異なる点

時間発展の計算とエネルギースペクトルの計算が現在進行中!

Gross-Pitaeskii方程式による絶対零度での超流動 乱流の数値シミュレーションを用いて、古典乱流との 対応を議論した 2. Gross-Pitaeskii方程式は圧縮性流体の方程式であ るため、渦の再結合等によって生じた短波長の音波 が、超流動乱流における本来の量子渦ダイナミクス に影響を与える。そこで短いスケールでのみ有効な 散逸を導入し、これら音波の影響を消した 3. 超流動乱流の渦の運動エネルギーのスペクトルが 古典乱流の統計則であるKolmogorov則と定量的に 一致した

まとめ:量子系のダイナミクス

これまで量子力学の物質への応用は、ほとんど固体に限定されてきた。

量子渦に象徴される量子流体力学の 眼目は何か?

流体において、要素還元的な理解ができることである!

流体は流れる、変形する、多くの自由度が生き残っている・・ ⇒そのような多自由度をreduceする低温における量子凝縮系

量子渦、素励起をいったような要素還元的な見方が、流体や流動の理解をより加速するかもしれない。

極低温での量子渦糸の減衰

再結合による音波放出

素励起(フォノ ン・ロトン)の放 出 (Richardson カスケードのな での果て) いずれも 高波数 領域で 起こる

数値計算の精度

		1	2	3
	時間分解能	$\Delta t = 1 \times 10^{-4}$	$\Delta t = 1 \times 10^{-4}$	$\Delta t = 2 \times 10^{-5}$
	空間分解能	256^3 grids	512^3 grids	256^3 grids
1:現行の数値シミュレーション				

0 < t < 12のシミュレーションにおいてシミュレーション間の相 対誤差の最大値 $F_{ij}(E) = |(<E>_i - <E>_j)/<E>_i$ |を計算する($\Box_0 = 0$)

	F_{12}	F_{13}
	2.4×10^{-15}	$6.3 imes 10^{-13}$
$E_{\rm int}$	3.7×10^{-15}	8.8×10^{-13}
$E_{\rm q}$	2.6×10^{-15}	6.9×10^{-13}
$E_{\rm kin}$	5.1×10^{-15}	9.4×10^{-13}

エネルギー保存 $|[E(t=0) - E(t=12)]/E(t=0)| \simeq 6.5 \times 10^{-13}$ 異なる分解能間で、また時 間発展においてエネル ギーが10桁以上保存して いる⇒高い精度

$\Box(k)\Box = \Box_0 \qquad \Box(k)\Box = \Box_0 \Box(k - 1)$

[(k)] =

V