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Quantum Fluid and Quantum Turbulence

g
*Superfluid ‘He and *He
System of quantum fluid and ‘ ‘
quantum turbulence *Magnetically or optically trapped
ultra-cold Atoms

N

— At low temperatures, these systems show inviscid superfluid
with Bose-Einstein condensation (or BCS) transition



Quantized Vortex

In quantum fluid, all vortices are quantized
with quantum circulation k = h/m

*All vortices have same circulation x= ¢ v, ¢ ds= h / m around
vortex cores.

*\/ortex core is very thin (~A : *He, ~10nm : 3He, ~100nm BEC of cold
atoms) : Vortex filament model becomes realistic

&




Quantum Turbulence From Quantized
Vortices

Quantum turbulence can be realized as tangled quantized vortices

Simulation of quantum turbulence by vortex filament model

T. Araki, M. Tsubota and S. K. Nemirovskil,
Phys. Rev. Lett. 89, 145301 (2002)




Numerical Simulation of the Gross-Pitaevskii

Equation
Gross-Pitaevskii equation
i 1@)] 2 8(@) = | — 9%t T ()| ()

a : Scattering length

v(x) : Dissipation term for elementary excitations

@ Equation for dynamics of order parameter in BEC
/|




Numerical Simulation of the Gross-Pitaevskii
Equation

Gross-Pitaevskii equation

, 0, h? Arh?a
i~ ()] @) = [~ 1Vt

@(2)]* | ()

2m

O(z) = |D(z)| explit(z)]

p(x) = |®(z)|* : Density

v(x) = (h/m)VO(x) : Velocity field
¢ =1/+/8map : Vortex core size




Quantum Turbulence From Quantized
Vortices

Quantum turbulence can be realized as tangled quantized vortices

Simulation of quantum turbulence by Gross-Pitaevskii equation
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We observed the Kolmogorov
law : E(k) < k-3 between
scale of injected vortex ring R
and the vortex core size &.




Quantum Turbulence From Quantized
Vortices

Quantum turbulence can be realized as tangled quantized vortices

Energy spectrum (a. u. )

J. Maurer and P. Tabeling,
Europhys. Lett. 43 (1), 29 (1998)

| —2.30 K (normal)
/| —2.08 K (super)
|— 1.40 K (super)

107 103
Frequency (Hz)

There are some similarities hetween

classical and quantum turbulence



Kolmogorov Law for Fully Developed Steady
Turbulence

p 1le Keeping the self-similarity, Energy Is
transferred from large to small scales
without dissipation —Kolmogorov law

E(k)
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Richardson Cascade of Vortices

E
/ Energy-containing range :
Iy Large eddies are nucleated
: QDD Q Inertial range : Eddies are

QOOOTOHODOO J* broken up to small ones
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............................................................... 8\ Enerqy-dissinative range : Small
| eddies are dissipated



Richardson Cascade of Vortices

W E A T H E R PR E D I CT I O N 66 THE FUNDAMENTAL EQUATIONS Ca. 4/8/0

Exceptionally low diffusivities have been measured at night by L. F. Richardson (32)
RY in the cold air near the earth. Airmen are very familiar with the increased bumpiness
i *——w them. All these facts show

y facilitated when the thermal

N - - - e e
NUYTbig whirls have little whirls St o
alloons or from aeroplanes.

sige has been 8;‘791) }).Y L. B

which feed on their velocity,

ability. Thus C. K. M. Douglas

wwis e wt gnd little whirls have lesser whirls i L

FORMY gets a similar impression when
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Thus, because it is not possible to separate eddies into clearly defined classes
according to the source of their energy; and as there is no object, for present purposes,
in making a distinction based on size between cumulus eddies and eddies a few metres
in diameter (since both are small compared with our coordinate chequer), therefore a
single coefficient is used to represent the effect produced by eddies of all sizes and
descriptions. We have then to study the variations of this coeflicient. But first we
must consider the differential equation. In doing so the aim has been to lay down
theoretically only so much as can be determined with strictness, leaving all un-
certainties to be decided by observation.

In hydrodynamics or aerodynamics it is customary to speak of the motions of
“definite portions” of the fluid, portions which may be marked by a.dot of milk in
water or of smoke in air. The capital D in D/Dt is commonly used to denote a time
differentiation following such a definite element. It is customary to ignore the fact
that molecules are constantly passing in and out of the element called ““definite.”
When we have to deal with eddies, the interchanges are more conspicuous, for
boundaries marked by smoke would rapidly fade and disperse. Yet some way must
be found of specifying an element which follows the mean motion. The fundamental
idea seems to be the following. When there are no eddies we are accustomed to
compute the flow of entropy or water across a plane from the flow of mass across
the plane. As the effect of eddies is to be treated as additional, it should not include
any flow due to the mean motion of mass across a plane. Accordingly we should adopt

some such definition as the following:
CAMBR‘IDGE = Draw a sphere in the fluid. Let the radius be as large as is necessary to include
AT THE UNIVERSITY PRESS a considerable number of eddies, but no larger. Let the sphere move so that the
1922 whole momentum of the fluid inside it is equal to the mass of the same fluid multiplied

LECTY




Leonardo da Vinci Already Had Same Image

Sketch of eddies in turbulence
made by water pipe

Leonardo da Vinci

Turbulence is constituted by eddies.

‘Turbulence classify eddies into size.

*Eddies with same class interact each other.




Eddies in Classical Turbulence

Earth turbulence
Dragonfly turbulence

It is very difficult to identify eddies and the Richardson
cascade (Eddies are diffused by the viscosity)



Identification of Vortices

Y. Kaneda, et al, Phys. Fluids. 15, L21 (2003)

Classical turbulence : difficult Quantum turbulence: already defined
as topological defects



Richardson Cascade : Quantum Turbulence

Version
Mean vortex distance Core size
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Richardson cascade

Kelvin wave cascade
(Quantum turbulence only)

Reconnection : Elementary
process of turbulence

W. F. Vinen and R. Donnelly,
Physics Today 60, 43 (2007)

Cascade of quantized
vortices can be expected
In quantum turbulence.

Not only Richardson
cascade, but also Kelvin
wave cascade Is also
expected in guantum
turbulence

\Vortex dissipates to
elementary excitations
(This effect Is not
Included in Gross-
Pitaevskil equation)
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Energy Spectrum of the Gross-Pitaevskil
Turbulence
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R : Size of injected vortex rings

E(k) o< k-7 : Kolmogorov law

[ = (V/L)"2 . Vortex mean distance

E(k) =< k- : Different scaling
from the Kolmogorov law
(Kelvin wave turbulence :
Intrinsic phenomenon of
quantum turbulence?)

& . Vortex core size



The Study of Quantum Turbulence in the
Viewpoint of Quantized Vortices

Quantized vortices give the real Richardson cascade in turbulence

Cascade of 1 vortex ring in
turbulence

What Is the relation between cascades in
wave number space and real space?

Enstrophy and =~ ) — /da: V x v(z))? = /dk K E(k) = /dk Q(k)
its spectrum



Relation Between Wave Number Space and
Real Space

In quantum turbulence, enstrophy is directly related to vortex line length
Q= /da’: IV xv(z)]* = /dk Q(k) x kL (Quantum turbulence)

Vortex line length spectrum : [E(k) o< k5% — Q(k) < L(k) x k*/?

1, Vortex length by the size of vortex ring 2, Fractal length




The Study of Quantum Turbulence by
Superfluid Helium

Quantum turbulence has been realized only in the system
of superfluid helium

Two-counter rotating Oscillating grid (Lancaster)
disks (Paris)

Vibrating wire

H. Yano et al. Phys. Rev. B 75,
012502 (2007)

Pressure P
measurement

D. L. Bradley et al. Phys.

_ Rev. Lett. 96, 035301 (2-6)
J. Maurer and P. Tabeling,

Europhys. Lett. 43 (1), 29 (1998)




Observation of Quantized Vortices

*(Second) sound

*/ibrating wire

‘NMR second peak

E. J. Yarmchuk and R. E. Packard,
J. Low Temp. Phys. 46, 479 (1982).

Only total vortex line
length can be measured

Visualization of vortex
lattice under the rotation

It is very difficult to measure the
spatial distribution of quantized
vortices




Atomic Bose-Einstein Condensates and
uantized Vortices

Laser cooling REC

Trapped atomic gas
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Observation of Vortex Lattice Under the
Rotation

Rotation of BEC Rotation of anisotropic potential

= g '/

1st rotation

U
PN

% K.W.Madison et.al Phys.Rev

Lett 84, 806 (2000)

Optical spoon



Observation of Vortex Lattice Under the

Rotation
P. Engels, et.al J.R. Abo-Shaeer, et.al V. Bretinetal. PRL
PRL 87, 210403 (2001) Science 292, 476 (2001) 90 100403(2'003)

M. R. Matthews et al.

K. W. Madison et al. PRL PRL 83, 2498(1999)
86, 4443(2001)




The Study of Quantum Turbulence in Atomic

BEC
The merit of Atomic BEC
There has heen no *Almost all physical parameters can be
research of quantum controllable such as the total number of

turbulence in this field | particles, the temperature, the density,
and even inter-particle interaction.

*Quantized vortices can be observed as
holes of the density

Atomic BEC can he a good candidate
to study quantum turbulence (Human
being can get controlliable turbulence!)




Toward the Realization of Quantum
Turbulence

It is difficult to apply the velocity field to atomic BEC
- Effective tool : precession rotation

*Single rotation along one axis is realized without

1st rotation rotation along the other axis.

*Rotating vortex lattice can be realized when second
- rotation is weak.

] . .
*Rotating lattice becomes unstable and enter

2nd rotation turbulence when second rotation is strong.

</

L]

S. Goto, N. Ishii, S. Kida, and M.
Nishioka Phys. Fluids 19, 061705
(2007)




Precession Rotation in Atomic BEC

It is no need to rotate the experimental system itself for the case of
atomic BEC

1st rotation 1st rotation

2nd rotation

3rd fotation

_ AHIC T6taton

Precession rotation of optical spoon Itis even possible to realize three
axes rotation (more isotropic)



Numerical Simulation of the Gross-Pitaevskii

Equation
Gross-Pitaevskii equation
i — 1 (@)] S B(@) = | — 97—t Ul) + (@) - Q1) - L) | @)

U(x) : Magnetic trapping potential

Q(t) : Angular velocity of rotation

L(x) : Angular momentum operator

v(x) : Dissipation term for elementary excitations

@ Equation for dynamics of order parameter in BEC
/|



Numerical Simulation of the Gross-Pitaevskii
Equation

Gross-Pitaevskii equation

Bli — ()] 2 () = [ gt U)+ T (0) L)

O()

1st rotation . .
T<;V Precession rotation
. X Qt) = (Qy, Q2, sin Q1,2 cos Q)

T
2nd rotation

</

L]




Numerical Simulation of the Gross-Pitaevskii
Equation

Gross-Pitaevskii equation
bl — (2] 5 0(r) = [ L U@ T e - a) - La) | ()

m

Anisotropic trapping potential

U(z) = ——[(1—e)(l —e2)2” + (1 + &) (1 — e2)y” + (1 + e2)27]



Numerical Simulation of the Gross-Pitaevskii
Equation

Gross-Pitaevskii equation

h2
2m

Ali gtfb(x): [V2M+U(£B>—|—

Dissipation by the elementary

excitation

Y(k) = v00(k — 27 /&o)

. Effective in the scales smaller than

the vortex core

Arh2a
m
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MK & MT, PRL. 97, 145301 (2006)



Vortex Lattice Simulation

8TRb atoms : m = 1.46 x 1072° kg, a = 5.61 nm
N = 2.50 x 10°, ¢; = 0.05
Wy = wy = 120 X 27 Hz, w, = 20 x 27 Hz

o K. Kasamatsu, M. Tsubota and M.

Ueda, PRA. 67, 033610 (2003)

2=0.75 w,

2D analysis for long BEC




Quantum Turbulence Simulation

8TRb atoms : m = 1.46 x 1072° kg, a = 5.61 nm
N =2.50 x 10°, w = 150 x 27 Hz
Qz = Qm — O.6w, €1 — €9 =— 0.025

Numerics :  Space : Grid 5123 with Dirichlet boundary
(Chebyshev+tau)s, V = 14.0° ym Volume
Time : 4th ordered Runge-Kutta

Initial condition : No rotation and anisotropy



Quantum Turbulence Simulation

Density \Vortex

Vortices are not crystallized but tangled.



Quantum Turbulence Simulation

20 ensemble average
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Quantum Turbulence Simulation

Starting from vortex lattice

|




Three Axes Rotation

3rd rotation % 2nd rotation

Trapped
condensate

lst rotation

\Vortex tangle becomes
more Isotropic




Egl®miheay,

Three Axes Rotation
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Agreement with Kolmogorov law hecomes hetter




Summary

* Quantum turbulence Is the good system to study
turbulence because quantized vortices can be
clearly identified (studying the Richardson cascade,
the relation between cascade in wave number
space and real space).

* Atomic Bose-Einstein condensation is the good
experimental system to study quantum turbulence.



Thank You for Your Attention




Experimental Observation of the
Kolmogorov Law

‘ Expansion of BEC after switching off the magnetic trapping
E x / dk k=5/3

N /dk k1% = N (k) oc k™13

v~k — N(v) oo 1/6

v~ r(TOF) — N(r) Density distribution

Two-dimensional projection of vortex configuration

L(k) x kY3
—>/dchosgbo</dkk_5/3




Bragg Spectroscopy

Bragg spectroscopy with focused laser beam

‘ Collective excitation of BEC
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Spatial distribution of velocity field



