Non-Abelian Vortices in Spi nor Bose-Einstein Condensates

Michikazu Kobayashi^a

Collaborators: Yuki Kawaguchi^a, Muneto Nitta^b, and Masahito Ueda^a

University of Tokyo^a and Keio University^b

Apr. 21, 2009, Workshop of A03-A04 groups for Physics of New Quantum Phases in Superclean Materials(O22)

Contents

- 1. Vortices in Bose-Einstein condensates
- 2. Spin-2 Bose-Einstein condensates
- 3. Vortices in spin-2 Bose-Einstein condensates
- 4. Collision dynamics of vortices
- 5. Summary

Vortices in Bose-Einstein Condensates

vortex in ⁸⁷Rb BEC

K. W. Madison et al. PRL **86**, 4443 (2001)

vortex in ⁴He

G. P. Bewley et al. Nature **441**, 588 (2006) Vortices appears as line defects when symmetry breaking happens

•Vortices are Abelian for single-component BEC

Quantized Vortex and Topological Charge

Topological charge of a vortex can be considered how order parameter changes around the vortex core

 $\Psi(\theta)$

Single component BEC : $\Psi(\theta) \propto \exp[in\theta]$

Topological charge can be expressed by integer n

Quantized Vortex and Topological Charge

Topological charge of a vortex can be considered how order parameter changes around the vortex core

Topological charge can be expressed by the first homotopy group

single component BEC $\pi_1(G/H) = Z$

G (= U(1)): Symmetry of the system H (= 1): Symmetry of the order-parameter

When topological charge can be expressed by non-commutative algebra (: first homotopy group π_1 is non-Abelian), we define such vortices as "non-Abelian vortices"

Spin-2 BEC

Bose-Einstein condensate in optical trap (spin degrees of freedom is alive)

	${}^{87}\text{Rb}(I=3/2)$		
(F = I + S)	[$m_F = 2$	
(1 - 1 + 3)		$m_F = 1$	$\int m_F = 1$
$A \qquad S = 1/2$	F=2	$m_F = 0$	$F = 1 \left\{ m_F = 0 \right.$
		$m_F = -1$	$(m_F = -1)$
	l	$m_F = -2$	
		Bet characterized by m_F	

Introduction of spinor BEC

Hamiltonian of spinor boson system (without trapping and magnetic field)

$$H = -\int d\mathbf{x} \, \frac{\hbar^2}{2M} \nabla \Psi_m^{\dagger}(\mathbf{x}) \nabla \Psi_m(\mathbf{x}) + \frac{1}{2} \int d\mathbf{x}_1 \int d\mathbf{x}_2 \Psi_{m_1}^{\dagger}(\mathbf{x}_1) \Psi_{m_2}^{\dagger}(\mathbf{x}_2) V_{m_1 m_2 m'_1 m'_x}(\mathbf{x}_1 - \mathbf{x}_2) \Psi_{m'_2}(\mathbf{x}_2) \Psi_{m'_1}(\mathbf{x}_1)$$

Contact interaction (l = 0)

 $V_{m_1m_2m'_1m'_x}(\boldsymbol{x}_1 - \boldsymbol{x}_2) = \delta(\boldsymbol{x}_1 - \boldsymbol{x}_2) \sum_{F=even} g_F P_F$ $P_F = \sum_{m_1,m_2,m'_1,m'_2,M} O_{m_1m_2}^{F,M} \left(O_{m'_1m'_2}^{F,M}\right)^* |F,m'_1\rangle \otimes |F,m'_2\rangle \langle F,m_2| \otimes \langle F,m_1|$

Mean Field Approximation for BEC at T = 0

Case of Spin-2

$$H \simeq \int d\boldsymbol{x} \left[-\Psi_m^* \frac{\hbar^2}{2M} \nabla^2 \Psi_m + \frac{c_0}{2} n_{\text{tot}}^2 + \frac{c_1}{2} \boldsymbol{F}^2 + \frac{c_2}{2} |A_{00}|^2 \right]$$

$$c_0 = \frac{4g_2 + 3g_4}{7}, \quad c_1 = \frac{g_4 - g_2}{7}, \quad c_2 = \frac{7g_0 - 10g_2 + 3g_4}{7}$$
$$n_{\text{tot}}(\boldsymbol{x}) = \Psi_m^*(\boldsymbol{x})\Psi_m(\boldsymbol{x}), \quad \boldsymbol{F}(\boldsymbol{x}) = \Psi_m^*(\boldsymbol{x})\hat{\boldsymbol{F}}_{mm'}(\boldsymbol{x})\Psi_{m'}(\boldsymbol{x})$$

$$A_{00}(\boldsymbol{x}) = \frac{1}{\sqrt{5}} [2\Psi_2(\boldsymbol{x})\Psi_{-2}(\boldsymbol{x}) - 2\Psi_1(\boldsymbol{x})\Psi_{-1}(\boldsymbol{x}) + \Psi_0(\boldsymbol{x})^2]$$

 $n_{\rm tot}$: total density F : magnetization A_{00} : singlet pair amplitude

Spin-2 BEC

$$H \simeq \int d\boldsymbol{x} \left[-\Psi_m^* \frac{\hbar^2}{2M} \nabla^2 \Psi_m + \frac{c_0}{2} n_{\text{tot}}^2 + \frac{c_1}{2} \boldsymbol{F}^2 + \frac{c_2}{2} |A_{00}|^2 \right]$$

1. $c_1 < 0 \rightarrow$ ferromagnetic phase : $F \neq 0$

2.
$$c_1 > 0, c_2 < 0 \rightarrow \text{polar phase} : \mathbf{F} = 0, A_{00} \neq 0$$

3.
$$c_1 > 0, c_2 > 0 \rightarrow \text{cyclic phase} : \mathbf{F} = A_{00} = 0$$

$$\begin{array}{ccc} \mathbf{ferromagnetic} & \mathbf{polar} & \mathbf{cyclic} \\ e^{i\phi}e^{-i\boldsymbol{e}\cdot\hat{\boldsymbol{F}}\alpha} \begin{pmatrix} 1\\0\\0\\0\\0 \end{pmatrix} & e^{i\phi}e^{-i\boldsymbol{e}\cdot\hat{\boldsymbol{F}}\alpha} \begin{pmatrix} 0\\0\\1\\0\\0\\0 \end{pmatrix} & \mathrm{or} \begin{pmatrix} 1/\sqrt{2}\\0\\0\\0\\1/\sqrt{2} \end{pmatrix} & e^{i\phi}e^{-i\boldsymbol{e}\cdot\hat{\boldsymbol{F}}\alpha} \begin{pmatrix} i/2\\0\\1/\sqrt{2}\\0\\1/\sqrt{2} \end{pmatrix} \\ \end{array}$$

Spin-2 BEC

Triad of ³He-A and cyclic phase

Half quantized vortex : spin & gauge rotate by π around vortex core

Topological charge can be expressed by integer and half integer (Abelian vortex)

$$\pi_1(G/H) = Z_2 \ltimes Z$$

There are 5 types of vortices in the cyclic phase

gauge vortex

integer spin vortex

 2π

1/2-spin vortex : triad rotate by π around three axis e_x , e_y , e_z

1/3 vortex : triad rotate by $2\pi/3$ around four axis e_1 , e_2 , e_3 , e_4 and $2\pi/3$ gauge transformation

 $e_1 = (1, 1, 1)/\sqrt{3}, \quad e_2 = (1, -1, -1)/\sqrt{3}$ $e_3 = (-1, 1, -1)/\sqrt{3}, \quad e_4 = (-1, -1, 1)/\sqrt{3}$

4, 2/3 vortex : triad rotate by $4\pi/3$ around four axis e_1 , e_2 , e_3 , e_4 and $4\pi/3$ gauge transformation

 $e_1 = (1, 1, 1)/\sqrt{3}, \quad e_2 = (1, -1, -1)/\sqrt{3}$ $e_3 = (-1, 1, -1)/\sqrt{3}, \quad e_4 = (-1, -1, 1)/\sqrt{3}$

vortices	mass circulation	core structure	
gauge	1	density core	
Integer spin	0	polar core	
1/2 spin	0	polar core	
1/3	1/3	ferromagnetic core	
2/3	2/3	ferromagnetic core	

Topological Charge of Vortices is Non-Abelian

There are 12 rotations for vortices

Non-Abelian Vortices

12 rotations makes non-Abelian tetrahedral group ${\cal T}$

Topological charge can be expressed by non-Abelian algebra which includes tetrahedral symmetry \rightarrow non-Abelian vortex

$$\pi_1(G/H) = (Z_2 \ltimes T) \ltimes Z$$

Collision Dynamics of Vortices

"Non-Abelian" character becomes remarkable when two vortices collide with each other

→ Numerical simulation of the Gross-Pitaevskii equation Initial state : two straight vortices in oblique angle, linked vortices

Gross-Pitaevskii Equation

$$i\hbar \frac{\partial \Psi_m}{\partial t} = \frac{\delta H}{\delta \Psi_m^*}$$

$$\begin{split} i\hbar\frac{\partial\Psi_{2}}{\partial t} &= -\frac{\hbar^{2}}{2M}\nabla^{2}\Psi_{2} + c_{0}n_{\text{tot}}\Psi_{2} + c_{1}(F_{-}\Psi_{1} + 2F_{z}\Psi_{2}) + \frac{c_{2}}{\sqrt{5}}A_{00}\Psi_{-2}^{*} \\ i\hbar\frac{\partial\Psi_{1}}{\partial t} &= -\frac{\hbar^{2}}{2M}\nabla^{2}\Psi_{1} + c_{0}n_{\text{tot}}\Psi_{1} + c_{1}\left(\frac{\sqrt{6}}{2}F_{-}\Psi_{0} + F_{+}\Psi_{2} + F_{z}\Psi_{1}\right) - \frac{c_{2}}{\sqrt{5}}A_{00}\Psi_{-1}^{*} \\ i\hbar\frac{\partial\Psi_{0}}{\partial t} &= -\frac{\hbar^{2}}{2M}\nabla^{2}\Psi_{0} + c_{0}n_{\text{tot}}\Psi_{0} + \frac{\sqrt{6}}{2}c_{1}(F_{-}\Psi_{-1} + F_{+}\Psi_{1}) + \frac{c_{2}}{\sqrt{5}}A_{00}\Psi_{0}^{*} \\ i\hbar\frac{\partial\Psi_{-1}}{\partial t} &= -\frac{\hbar^{2}}{2M}\nabla^{2}\Psi_{-1} + c_{0}n_{\text{tot}}\Psi_{-1} + c_{1}\left(\frac{\sqrt{6}}{2}F_{+}\Psi_{0} + F_{-}\Psi_{-2} - F_{z}\Psi_{-1}\right) - \frac{c_{2}}{\sqrt{5}}A_{00}\Psi_{1}^{*} \\ i\hbar\frac{\partial\Psi_{-2}}{\partial t} &= -\frac{\hbar^{2}}{2M}\nabla^{2}\Psi_{-2} + c_{0}n_{\text{tot}}\Psi_{-2} + c_{1}(F_{+}\Psi_{-1} - 2F_{z}\Psi_{-2}) + \frac{c_{2}}{\sqrt{5}}A_{00}\Psi_{2}^{*} \end{split}$$

Used Pair of Vortices

1, same vortices	1/3 vortex (e_1)	1/3 vortex (e_1)
2, different commutative vortices	1/3 vortex (e_1)	2/3 vortex (e_1)
3, different non- commutative vortices	$\begin{bmatrix} 1/3 \text{ vortex } (\boldsymbol{e}_1) \\ 1/3 \text{ vortex } (\boldsymbol{e}_1) \end{bmatrix}$	2/3 vortex ($m{e}_2$) 1/3 vortex ($m{e}_2$)

Collision Dynamics of Vortices

Commutative topological charge

reconnection

passing through

Non-commutative topological charge

polar rung

ferromagnetic rung

Collision Dynamics of Linked Vortices

Commutative Non-commutative

untangle not untangle

Algebraic Approach

Consider 4 closed paths encircling two vortices

Path *d* defines vortex *B* as ABA^{-1} (same conjugacy class)

Y-shape Junction

Collision of Vortices

Collision of Same Vortices

Collision of Different Commutative Vortices

Collision of Different Non-commutative Vortices

Linked Vortices

non-commutative

 $AB^{-1}A^{-1}B$

A

 $AB^{-1}ABA^{-1}$

Summary

- 1. Vortices with non-commutative circulations are defined as non-Abelian vortices.
- 2. Non-Abelian vortices can be realized in the cyclic phase of spin-2 BEC
- 3. Collision of two non-Abelian vortices create a new vortex between them as a rung (networking structure).

Future: Topological Charge of Linked Vortices

Linked vortex itself has another topological charge \rightarrow Searching and applying new homotopy theories

Poster-11, S. Kobayashi "Classification of topological defects by Fox homotopy group"

Future: Network Structure in Quantum Turbulen

се

Turbulence with non-Abelian vortices
↓
Large-scale networking structures
among vortices with rungs
Non-cascading turbulence
New turbulence!

Quantized Vortices in Multi-component BEC

Spin-2 BEC

Bose-Einstein condensate in optical trap (spin degrees of freedom is alive)

	${}^{87}\text{Rb}(I=3/2)$		
(F = I + S)	[$m_F = 2$	
(1 - 1 + 3)		$m_F = 1$	$\int m_F = 1$
$A \qquad S = 1/2$	F=2	$m_F = 0$	$F = 1 \left\{ m_F = 0 \right.$
		$m_F = -1$	$(m_F = -1)$
	l	$m_F = -2$	
		Bet characterized by m_F	

Spin dynamics of BEC

Stern-Gerlach experiment

H. Schmaljohann et al. PRL 92, 040402 (2004)

Spin-2 BEC

$$H \simeq \int d\boldsymbol{x} \left[-\Psi_m^* \frac{\hbar^2}{2M} \nabla^2 \Psi_m + \frac{c_0}{2} n_{\text{tot}}^2 + \frac{c_1}{2} \boldsymbol{F}^2 + \frac{c_2}{2} |A_{00}|^2 \right]$$

1. $c_1 < 0 \rightarrow$ ferromagnetic phase : $F \neq 0$

2.
$$c_1 > 0, c_2 < 0 \rightarrow \text{polar phase} : \mathbf{F} = 0, A_{00} \neq 0$$

3.
$$c_1 > 0, c_2 > 0 \rightarrow \text{cyclic phase} : \mathbf{F} = A_{00} = 0$$

$$\begin{array}{ccc} \mathbf{ferromagnetic} & \mathbf{polar} & \mathbf{cyclic} \\ e^{i\phi}e^{-i\boldsymbol{e}\cdot\hat{\boldsymbol{F}}\alpha} \begin{pmatrix} 1\\0\\0\\0\\0 \end{pmatrix} & e^{i\phi}e^{-i\boldsymbol{e}\cdot\hat{\boldsymbol{F}}\alpha} \begin{pmatrix} 0\\0\\1\\0\\0\\0 \end{pmatrix} & \mathrm{or} \begin{pmatrix} 1/\sqrt{2}\\0\\0\\0\\1/\sqrt{2} \end{pmatrix} & e^{i\phi}e^{-i\boldsymbol{e}\cdot\hat{\boldsymbol{F}}\alpha} \begin{pmatrix} i/2\\0\\1/\sqrt{2}\\0\\1/\sqrt{2} \end{pmatrix} \\ \end{array}$$

Spin-2 BEC

$$H \simeq \int d\boldsymbol{x} \left[-\Psi_m^* \frac{\hbar^2}{2M} \nabla^2 \Psi_m + (mp + m^2 q) n_{\text{tot}} + \frac{c_0}{2} n_{\text{tot}}^2 + \frac{c_1}{2} \boldsymbol{F}^2 + \frac{c_2}{2} |A_{00}|^2 \right]$$

1.
$$c_1 < 0 \rightarrow$$
 ferromagnetic phase : $\mathbf{F} \neq 0$
2. $c_1 > 0, c_2 < 0 \rightarrow$ polar phase : $\mathbf{F} = 0, A_{00} \neq 0$
3. $c_1 > 0, c_2 > 0 \rightarrow$ cyclic phase : $\mathbf{F} = A_{00} = 0$

Experimental observation for ⁸⁷Rb $c_1 / (4\pi h^2 / M) = (0.99 \pm 0.06) a_B$ $c_2 / (4\pi h^2 / M) = (-0.53 \pm 0.58) a_B$

Whether the system is in polar or cyclic has not decided yet

A. Widera et al. New J. Phys **8**, 152 (2006)

Phase Diagram

$$H \simeq \int d\boldsymbol{x} \left[-\Psi_m^* \frac{\hbar^2}{2M} \nabla^2 \Psi_m + (mp + m^2 q) n_{\text{tot}} + \frac{c_0}{2} n_{\text{tot}}^2 + \frac{c_1}{2} \boldsymbol{F}^2 + \frac{c_2}{2} |A_{00}|^2 \right]$$

$$\frac{E_{\rm f}}{N} = 2p + 4q + \frac{c_0 n_{\rm tot}}{2} + 2c_1 n_{\rm tot}$$
$$\frac{E_{\rm pu}}{N} = \frac{c_0 n_{\rm tot}}{2} + \frac{c_2 n_{\rm tot}}{10}$$
$$\frac{E_{\rm pb}}{N} = 4q + \frac{c_0 n_{\rm tot}}{2} + \frac{c_2 n_{\rm tot}}{10}$$
$$\frac{E_{\rm c}}{N} = 2q + \frac{c_0 n_{\rm tot}}{2}$$

Phase diagram with neglecting linear Zeeman

$$B_{f-pu}: q = -\frac{c_1 n_{tot}}{2} + \frac{c_2 n_{tot}}{40}$$

$$B_{f-pb}: c_1 n_{tot} = \frac{c_2 n_{tot}}{20} \qquad q$$

$$B_{f-c}: q = -c_1 n_{tot}$$

$$B_{pu-pb}: q = 0$$

$$B_{pu-c}: q = \frac{c_2 n_{tot}}{20}$$

$$B_{pb-c}: q = -\frac{c_2 n_{tot}}{20}$$

$$C_1$$

Phase Diagram

$$H \simeq \int d\boldsymbol{x} \left[-\Psi_m^* \frac{\hbar^2}{2M} \nabla^2 \Psi_m + (mp + m^2 q) n_{\text{tot}} + \frac{c_0}{2} n_{\text{tot}}^2 + \frac{c_1}{2} \boldsymbol{F}^2 + \frac{c_2}{2} |A_{00}|^2 \right]$$

Phase Diagram

Estimation of number density : TF

$$\mu = c_0 n_{tot} + \frac{1}{2} M(\omega_r^2 r^2 + \omega_z^2 z^2)$$

$$n_{tot} = \frac{2\mu - M(\omega_r^2 r^2 + \omega_z^2 z^2)}{2c_0}$$

$$N = \int d^3 r n_{tot} = \frac{16\sqrt{2}\pi\mu^{5/2}}{15c_0 M^{3/2} \omega_r^2 \omega_z}$$

$$n_{tot}(r = 0) = \frac{\mu}{c_0} = \sqrt[5]{\frac{225M^3N^2\omega_r^4\omega_z^2}{512\pi^2 c_0^3}}$$
Cyclic vs ferro
$$\frac{(\mu_B B)^2}{4\Delta_{hf}} = c_1 n_{tot}$$

$$B = \frac{2\sqrt{c_1 n_{tot} \Delta_{hf}}}{\mu_B} = 0.481 \text{Gauss}$$
Cyclic vs polar
$$\frac{(\mu_B B)^2}{4\Delta_{hf}} = \frac{c_2 n_{tot}}{20}$$

$$B = \frac{\sqrt{c_2 n_{tot} \Delta_{hf}}}{\sqrt{5}\mu_B} = 0.024 \text{Gauss}$$

Assuming cyclic phase

$$c_0/(4\pi\hbar^2 a_{\rm B}/M) = 112.54$$

$$c_1/(4\pi\hbar^2 a_{\rm B}/M) = 0.99$$

$$c_2/(4\pi\hbar^2 a_{\rm B}/M) = 0.05$$

• $q = -(\mu_{\rm B}B)^2/(4\Delta_{\rm hf}) = 4.746 \times 10^{-32} B({\rm Gauss})^2 {\rm J}$

- $\omega_z = 21 \times 2\pi$ Hz
- $\omega_r = 141 \times 2\pi$ Hz
- $M = 1.46 \times 10^{-25} \text{ kg}$
- $N = 2.5 \times 10^5$
- $c_0 = 5.703 \times 10^{-51} \text{ Jm}^3$
- $c_1 = 5.017 \times 10^{-53} \text{ Jm}^3$
- $c_2 = 2.534 \times 10^{-54} \text{ Jm}^3$
- $n_{\rm tot} = 2.19 \times 10^{20} \ {\rm m}^{-3}$

渦状態

最も低エネルギーだと思われる(有限mass circulationの)渦

•Cyclic : 1/3 vortex •Polar : 1/4 vortex } 実はどちらも非可換量子渦の1つ

$$\Psi_{1/3} = \frac{1}{\sqrt{3}} \begin{pmatrix} 0 \\ \sqrt{2} \\ 0 \\ 0 \\ e^{i\theta} \end{pmatrix} \qquad \qquad \Psi_{1/4} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ e^{i\theta} \end{pmatrix}$$

渦状態(1/3 vortex)

渦状態(1/3 vortex)

渦状態(1/3 vortex)

渦状態(1/4 vortex)

渦状態(1/4 vortex)

渦状態(1/4 vortex)

まとめ

- 1. cyclicではpolarコアの、polarではcyclicの渦が入る。
- polarコアは2回軸対称を、cyclicコアは3回軸対称性を自発的に 破る(入った渦の対称性が見えれば相を同定できる?)
- 3. 以上の結果から、局所密度近似が敗れるような状況ではpolar 相は2回軸対称性の破れをcyclic相は3回軸対称性の破れを好 む可能性がある(3角形のトラップや3角格子を作れば $c_2 < 0$ で もcyclicが増強される可能性がある)。