ボース・アインシュタイン凝縮体の 様々な位相欠陥とトポロジー

小林未知数

共同研究者:小林伸吾・川口由紀・新田宗土・上田正仁

東京大学総合文化研究科

2010年1月21日 応用数学連携フォーラム第11回ワークショップ

セミナーの内容

1.ボース・アインシュタイン凝縮体(BEC)とは? 2. BECにおける位相欠陥 - 量子渦 3. BECにおける位相欠陥 - スカーミオンなど 4.量子渦の衝突シミュレーション 5.スカーミオンと量子渦の相互作用 6.量子乱流 7 まとめ

液体ヘリウムは低温で超流動状態となり、粘性を 持っていないかのように振る舞う

超流動はボース・アインシュタイン凝縮(BEC)によって 引き起こされる

ボース系では低温において巨視 的な数の原子が、1粒子の基底状 態を占有し、巨視的な波動関数 を形成する。

原子集団は巨視的波動関数とし てコヒーレントに運動し、超流 動を引き起こす。

巨視的波動関数 : $\langle \hat{\Psi}(x) \hat{\Psi}^{\dagger}(y) \rangle \xrightarrow{|x-y| \to \infty} \Psi(x) \Psi^{*}(y)$

原子気体ボース・アインシュタイン 凝縮

1997年に希薄なアルカリ原子気体のボース・アインシュタイン凝縮が成功した

原子のトラップ

⁸⁷Rb, ²³Na, ⁷Li, ¹H, ⁸⁵Rb,
 ⁴¹K, ⁴He, ¹³³Cs, ¹⁷⁴Yb,
 ⁵²Cr, ⁴⁰Ca, ⁸⁴Sr

レーザーによる原子の冷却

BEC of ⁸⁷Rb

BECとU(1)ゲージ対称性の破れ

BECの本質は巨視的波動関数の存在である $\langle \hat{\Psi}(x) \hat{\Psi}^{\dagger}(y) \rangle \xrightarrow{|x-y| \to \infty} \Psi(x) \Psi^{*}(y)$

 $\Psi(x) = |\Psi(x)| \exp[i \varphi(x)]$:長時間にわたって $位相 \varphi(x)
 が決まる \to \Psi に U(1)
 の自由度がある$

絶対零度における平均場ハミルトニア

$$H = \int d\boldsymbol{x} \left[\frac{\hbar^2}{2M} \nabla \Psi^*(\boldsymbol{x}) \nabla \Psi(\boldsymbol{x}) + \frac{c_0}{2} |\Psi(\boldsymbol{x})|^4 \right]$$

BECとU(1)ゲージ対称性の破れ

絶対零度における平均場ハミルトニア
ン
$$H = \int dx \left[\frac{\hbar^2}{2M} \nabla \Psi^*(x) \nabla \Psi(x) + \frac{c_0}{2} |\Psi(x)|^4 \right]$$

$$\Psi(oldsymbol{x}) = |\Psi(oldsymbol{x})| \exp[\mathrm{i}arphi(oldsymbol{x})]$$
 $ho(oldsymbol{x}) = |\Psi(oldsymbol{x})|^2$:流体の数密度
 $oldsymbol{v}(oldsymbol{x}) = rac{\hbar}{m}
abla arphi(oldsymbol{x})$:流体の流速

$$\Psi(\mathbf{x}) = |\Psi(\mathbf{x})| \exp[i\varphi(\mathbf{x})]$$
 $ho(\mathbf{x}) = |\Psi(\mathbf{x})|^2$:流体の数密度
 $\mathbf{v}(\mathbf{x}) = \frac{\hbar}{m} \nabla \varphi(\mathbf{x})$:流体の流速

波動関数の位相
$$\varphi$$
が2 π ずれている部分があると、その中心では波動関数を定義できず($\rho = 0$)欠陥(defect)となる。

欠陥は線状に走り、量子渦となる

$$\Psi = \sqrt{
ho} \exp[in heta]$$

 $oldsymbol{v} = (n\hbar/m)
abla heta : 流体の速度場$
 $\oint oldsymbol{v} \cdot doldsymbol{l} = rac{h}{m}n : 渦の循環$

実際には2πだけでなく、2πの整数倍n だけの位相のずれが可能である。

量子渦の分類:U(1)の空間を何周したか? は連 $A \rightarrow 基本群によって表される: \pi_1[U(1)] \cong \square$

原子気体ボース・アインシュタイン凝縮での渦格子

⁸⁷Rb BECでの

arphi

 π

渦格子

K. W. Madison et al. PRL 86, 4443 (2001)

渦格子形成のシミュレーション

- π

超流動⁴He中の渦タングル

G. P. Bewley et al. Nature 441, 588 (2006)

超流動⁴He中の渦格子

Packard 1982

秩序変数:2次元単位ベクトル

 $oldsymbol{s} = (s_{\scriptscriptstyle X}, \, s_{\scriptscriptstyle V}, \, s_{\scriptscriptstyle Z})$ 二次元球面 S²

• 秩序変数: 3次元単位ベクトル

3次元的に回転させることによってXYスピンの欠陥は消える

スピノールBEC

原子のスピン自由度が生きているようなBECを考える

超微細相互作用により核と電子の スピンが結合する(F = I + S + L)

⁸⁷ Rb, ²³ Na,	F=1, 2
⁷ Li, ⁴¹ K	
⁸⁵ Rb	F=2, 3
¹³³ Cs	F=3, 4
⁵² Cr	S=3, I=0

スピノールBEC

原子のスピン自由度が生きているようなBECを考える

$$F = 2 \begin{cases} m_F = 2 \\ m_F = 1 \\ m_F = 0 \\ m_F = -1 \\ m_F = -2 \end{cases} F = 1 \begin{cases} m_F = 1 \\ m_F = 0 \\ m_F = -1 \\ m_F = -1 \end{cases}$$

 m_F で特徴づけられる多 成分のBECが実現する

スピン1:3成分の非対角長距離 秩序 Ψ = (ψ₁, ψ₀, ψ₋₁)

> Stern-Gerlach実験により 成分ごとに観測できる

BECのスピンダイナミクス

Stern-Gerlach実験 $F \equiv 1$ F = 20.8 s 2 5 4 s 1 s7 s (a) 10ms 40ms |+2> |+1> |0> |-1> |-2> |+2> |+1> |0> |-1> |-2> (c)

2 5 0 s 0.5 s3 s 5 s J. Stenger et al. Nature **396**, 345 (1998)

mF

+1

0

- 1

+1

0

- 1

200ms

(b)

50ms

500ms

(d)

150ms

異なるm_Fの凝縮体は入れ替わることが できる(スピンの回転演算に対応) ボース・アインシュタイン凝縮体の様々な位相欠陥とトポロジー

絶対零度における平均場ハミルトニア ン(spin-1)

$$H = \int dx \left[\frac{\hbar^2}{2M} \sum_{m=-1}^{1} \nabla \Psi_m^* \nabla \Psi_m + \underbrace{\frac{c_0}{2}\rho^2}_{\mathbf{SE}} + \underbrace{\frac{c_1}{2}F^2}_{\mathbf{SE}} \right]$$

$$c_0 = \frac{g_0 + 2g_2}{3}, \quad c_1 = \frac{g_2 - g_0}{3}$$

$$\rho = \sum_{m=-1}^{1} |\Psi_m^*|^2 : \mathbf{\hat{k}} \mathbf{T} \mathbf{S} \mathbf{SE}$$

$$F_z = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \quad F_+ = \begin{pmatrix} 0 & \sqrt{2} & 0 \\ 0 & 0 & \sqrt{2} \\ 0 & 0 & 0 \end{pmatrix}$$

$$F_- = F_+^T, \quad F_x = \frac{F_+ + F_-}{2}, \quad F_y = \frac{F_+ - F_-}{2i}$$

 $m{F} = \sum_{m,m'=-1} \Psi_m^* \hat{m{F}}_{mm'} \Psi_{m'}$:スピン密度

波動関数全体の位相($U(1)_G$)とスピン回転($SO(3)_S$)の 対称性: $U(1)_G \times SO(3)_S$ の自由度が存在する。

U(1)×SO(3)の破れと相図

$$H = \int dx \left[\frac{\hbar^2}{2M} \sum_{m=-1}^{1} \nabla \Psi_m^* \nabla \Psi_m + \frac{c_0}{2} \rho^2 + \frac{c_1}{2} F^2 \right]$$

 $c_1 > 0$:polar相(²³Na BEC) $c_1 < 0$: Ferromagnetic相 (⁸⁷Rb BE C) C) $e^{i\varphi}e^{-i\boldsymbol{n}\cdot\hat{\boldsymbol{F}}lpha} \begin{pmatrix} 1\\ 0\\ 0 \end{pmatrix}$ $e^{i\varphi}e^{-i\boldsymbol{n}\cdot\hat{\boldsymbol{F}}lpha} \left(egin{array}{c} 0 \\ 1 \\ 0 \end{array}
ight)$ $\boldsymbol{F}=0$ $F \neq 0$

球面調和関数を用いたスピン状態の 表示

Polar相の対称性

Polar相の量子渦

Polar相の量子渦

Ferromagnetic相の対称性

Ferromagnetic相の渦

Ferromagnetic相の量子渦

巻き数2の量子渦はほどける

 $\pi_1\left[(SO(3))_{G+S}\right] \cong (\mathbb{Z}_2)_{G+S}$

4重極磁場を用いて巻き数2の渦を作る

磁場を加えておけば渦がほどけない

4重極磁場を用いて巻き数2の渦を作る

Y. Shin, et al. PRL 93, 160406 (2004)

Ferromagnetic相の量子渦

モノポールと2次元スカーミオン

量子渦のときに用いたループの代わりに、閉 じた球面から球面への写像を考える: π₂

モノポールと2次元スカーミオン

Polar相におけるモノポール

$$\pi_2 \left[\frac{U(1)_{\rm G} \times (S^2)_{\rm S}}{(\mathbb{Z}_2)_{\rm G+S}} \right] \cong (\mathbb{Z})_{\rm S}$$

Ferromagnetic相にモノポール は存在しない

 $\pi_1\left[(SO(3))_{\rm G+S}\right] \cong 1$

モノポールと2次元スカーミオン

モノポールと2次元スカーミオン

Polar相におけるスカーミオンとモノポール

L. S. Leslie, et al. arXiv:0910.4918

$$\pi_2 \left[\frac{U(1)_{\rm G} \times (S^2)_{\rm S}}{(\mathbb{Z}_2)_{\rm G+S}} \right] \cong (\mathbb{Z})_{\rm S}$$

3次元スカーミオン

3次元スカーミオン

3次元スカーミオン

$$H = \int dx \left[-\Psi_m^* \frac{\hbar^2}{2M} \nabla^2 \Psi_m + \frac{c_0}{2} n_{\text{tot}}^2 + \frac{c_1}{2} F^2 + \frac{c_2}{2} |A_{20}|^2 \right]$$

$$Uniaxial Nematic: \\ \Psi_U = (0, 0, 1, 0, 0)^T$$

$$C_1 \left[\frac{Cyclic:}{\Psi_C = (1, 0, 0, \sqrt{2}, 1)^T / \sqrt{3}} \right]$$

$$W_C = (1, 0, 0, \sqrt{2}, 1)^T / \sqrt{3}$$

$$W_B = (1, 0, 0, 0, 1)^T / \sqrt{2}$$

$$Ferromagnetic: \\ \Psi_F = (1, 0, 0, 0, 0)^T$$

$$C_2 = 20c_1$$

Spin-2の量子渦(Nematic相)

Spin-2の量子渦(Cyclic相)

1/2-spin vortex

 $e_x = (1, 0, 0), \quad e_y = (0, 1, 0), \quad e_z = (0, 0, 1)$

Spin-2の量子渦(Cyclic相)

1/3 vortex

位相欠陥のダイナミクス

量子渦の衝突 2次元スカーミオンと量子渦の相互作用 量子乱流

量子渦の衝突ダイナミクス

MK et al., PRL 103, 115301 (2009)

1成分BECその他、可換な量子渦 が衝突すると再結合を起こすこ とがよく知られている

非線型Schrödinger方程式 のシミュレーション

スピン2のBECに対する非線型 Schrödinger方程式

$\partial \Psi_m$	δH
$n - \frac{\partial t}{\partial t} =$	$=\overline{\delta\Psi_m^*}$

この方程式を用いて非可換量子渦の衝突がどうなるか調べる

量子渦の衝突ダイナミクス

非可換

再結合 新しい渦が2本を束縛

ほどける

非可換

渦の見え方が場所によって異なる

経路dは渦BをABA-1とみなす(共役類)

スカーミオンチャージの反転

量子流体で乱流を作れば渦と乱流の関係がより分か るのではないか?

I

粘性流体の渦はよく分からない

$$\kappa = h/m$$

量子流体の渦は位相欠陥である

MK et al., PRL 94, 065302 (2005)

量子乱流で古典乱流と同じ 統計則が得られる。

まとめ

・ボース・アインシュタイン凝縮体では様々な位相欠陥 が実現され、他分野で議論されているものと類似してい るものもあればBEC特有のものもある ・ボース・アインシュタイン凝縮体(特に内部自由度を 持っているもの)の位相欠陥はその非自明なダイナミク スを含め、抽象的なトポロジーの世界を具体化する格 好の系である

Collision of Vortices

Collision of Same Vortices

Collision of Different Commutative Vortices

Collision of Different Non-commutative Vortices

Linked Vortices

