### Physics of topological excitations in Bose -Einstein condensates

#### Michikazu Kobayashi (University of Tokyo)

Collaborators : Yuki Kawaguchi and Masahito Ueda (University of Tokyo) Muneto Nitta (Keio University)

Nov. 28, 2010, Statphys –Kolkata VII-

### Contents

- 1. Bose-Einstein condensates
- 2. Topological excitations in BEC
- 3. Dynamics of topological excitations
- 4. Summary

# **Bose-Einstein condensates**



In Bose system at low temperatures, macroscopic numbers of particle occupy the single-particle quantum state, forming the macroscopic wave function.

Atoms form the coherent state (origin of superfluidity)

macroscopic wave function :  $\langle \hat{\Psi}(x) \hat{\Psi}^{\dagger}(y) \rangle \xrightarrow{|x-y| \to \infty} \Psi(x) \Psi^{*}(y)$ Macroscopic wave function  $\Psi(x)$  is the order parameter of BEC

# **Atomic Bose-Einstein condensates**

#### Dilute alkali atomic Bose-Einstein condensates has been realized in 1997



Trap of atoms

<sup>87</sup>Rb, <sup>23</sup>Na, <sup>7</sup>Li, <sup>1</sup>H, <sup>85</sup>Rb,
 <sup>41</sup>K, <sup>4</sup>He, <sup>133</sup>Cs, <sup>174</sup>Yb,
 <sup>52</sup>Cr, <sup>40</sup>Ca, <sup>84</sup>Sr



Evaporating cooling of atoms



Laser cooling of atoms

### Atomic Bose-Einstein condensates

#### BEC of <sup>87</sup>Rb



# BEC and breaking of gauge symmetry

#### BEC : appearance of macroscopic wave function (order parameter) $\langle \hat{\Psi}(x) \hat{\Psi}^{\dagger}(y) \rangle \xrightarrow{|x-y| \to \infty} \Psi(x) \Psi^{*}(y)$

 $\Psi(x) = |\Psi(x)| \exp[i \varphi(x)]$ : Phase of the complex wave function  $\varphi(x)$  is fixed (U(1) gauge symmetry breaking)

#### Mean-field Hamiltonian at the zero temperature

$$\overline{H} = \int d\boldsymbol{x} \left[ \frac{\hbar^2}{2M} \nabla \Psi^*(\boldsymbol{x}) \nabla \Psi(\boldsymbol{x}) + \frac{c_0}{2} |\Psi(\boldsymbol{x})|^4 \right]$$

# Topological excitations (quantized vortices)

$$egin{aligned} \Psi(m{x}) &= |\Psi(m{x})| \exp[\mathrm{i}arphi(m{x})] \ 
ho(m{x}) &= |\Psi(m{x})|^2 : \ \mathsf{Fluid} \ \mathsf{density} \ m{v}(m{x}) &= rac{\hbar}{m} 
abla arphi(m{x}) : \ \mathsf{Fluid} \ \mathsf{velocity} \end{aligned}$$

Topological excitations (defects) of the wave function ( $\rho(\mathbf{x}) = 0$ ) around which phase  $\varphi(\mathbf{x})$  changes by integer multiple of  $2\pi$ : quantized vortices



# Topology of quantized vortices

Topological invariant of vortex is described by fundamental group



Topological invariants are characterized by how many times  $\Psi$  wind the U(1) phase :  $\pi_1[U(1)] = \Box$ 

# Experimental observation of vortices

#### Vortex lattice formation in atomic BEC

K. W. Madison et al. PRL 86, 4443 (2001)



Vortex lattice in <sup>87</sup>Rb BEC

# Experimental observation of vortices

#### Vortex lattice formation in atomic BEC



Simulation of vortex lattice formation

### **Spinor BEC**

BEC with spin degrees of freedom

Hyperfine coupling of electron end nuclear spin (F = I + L + S)



| <sup>87</sup> Rb, <sup>23</sup> Na,<br><sup>7</sup> Li, <sup>41</sup> K | F=1, 2   |
|-------------------------------------------------------------------------|----------|
| <sup>85</sup> Rb                                                        | F=2, 3   |
| <sup>133</sup> Cs                                                       | F=3, 4   |
| <sup>52</sup> Cr                                                        | S=3, I=0 |

# **Spinor BEC**

#### BEC with spin degrees of freedom

$${}^{87}\mathsf{Rb} (I = 3/2)$$

$$F = 2 \begin{cases} m_F = 2 \\ m_F = 1 \\ m_F = 0 \\ m_F = -1 \\ m_F = -2 \end{cases} F = 1 \begin{cases} m_F = 1 \\ m_F = 0 \\ m_F = -1 \\ m_F = -1 \end{cases}$$

Spin 1 : 3-component BEC  $\Psi = (\psi_1, \psi_0, \psi_{-1})$ 

Multicomponent BEC labeled by magnetic sublevel $m_F$ 



# **Spinor BEC**



Rotation of Spin can be observed

H. Schmaljohann et al. PRL 92, 040402 (2004)

# Theory of Spinor BEC

#### Hamiltonian of spinor Bosons

$$H = -\int d\mathbf{x} \, \frac{\hbar^2}{2M} \nabla \Psi_m^{\dagger}(\mathbf{x}) \nabla \Psi_m(\mathbf{x}) + \frac{1}{2} \int d\mathbf{x}_1 \int d\mathbf{x}_2 \Psi_{m_1}^{\dagger}(\mathbf{x}_1) \Psi_{m_2}^{\dagger}(\mathbf{x}_2) V_{m_1 m_2 m_1' m_x'}(\mathbf{x}_1 - \mathbf{x}_2) \Psi_{m_2'}(\mathbf{x}_2) \Psi_{m_1'}(\mathbf{x}_1)$$

Low energy contact interaction (l = 0) $V_{m_1m_2m'_1m'_x}(x_1 - x_2) = \delta(x_1 - x_2) \sum_{F=0,2,4} g_F \sum_{m_1,m_2,m'_1,m'_2,M} O_{m_1m_2}^{F,M} \left(O_{m'_1m'_2}^{F,M}\right)^*$ 

# Mean-field Hamiltonian (spin-1)

$$H = \int d\mathbf{x} \left[ \frac{\hbar^2}{2M} \sum_{m=-1}^{1} \nabla \Psi_m^* \nabla \Psi_m + \underbrace{\frac{c_0}{2}\rho^2}_{\text{Density}} + \underbrace{\frac{c_1}{2}F^2}_{\text{Spin}} \right]$$
  

$$F_z = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \quad F_+ = \begin{pmatrix} 0 & \sqrt{2} & 0 \\ 0 & 0 & \sqrt{2} \\ 0 & 0 & 0 \end{pmatrix}$$
  

$$F_- = F_+^T, \quad F_x = \frac{F_+ + F_-}{2}, \quad F_y = \frac{F_+ - F_-}{2i}$$

Gauge and spin rotation symmetry of wave function are broken

$$\Psi' = e^{i\varphi} e^{-i\mathbf{n}\cdot \mathbf{F}lpha} \Psi \left( U(1) \times SO(3) \right)$$

### Possible phase

$$H = \int dx \left[ \frac{\hbar^2}{2M} \sum_{m=-1}^{1} \nabla \Psi_m^* \nabla \Psi_m + \frac{c_0}{2} \rho^2 + \frac{c_1}{2} F^2 \right]$$

 $c_1 > 0$ : polar (23Na BEC)

$$e^{i\varphi}e^{-i\boldsymbol{n}\cdot\hat{\boldsymbol{F}}lpha} \left( egin{array}{c} 0 \ 1 \ 0 \end{array} 
ight)$$

 $\boldsymbol{F}=0$ 

 $c_1 < 0$ : Ferromagnetic (<sup>87</sup>Rb BEC)

$$e^{i\varphi}e^{-i\boldsymbol{n}\cdot\hat{\boldsymbol{F}}lpha} \left( egin{array}{c} 1 \\ 0 \\ 0 \end{array} 
ight)$$

 $\boldsymbol{F} \neq 0$ 

### Graphical image by the spherical Harmonics



# Topological excitation in polar state



# Topological excitation in polar state





#### Doubly winding state is no longer topological excitation



 $\pi_1[SO(3)] \simeq \mathbb{Z}_2$ 

T. Ishoshima, et al. PRA 61, 063610 (1999)

Creation of doubly winding state from zero winding



#### Adiabatic change of quadratic magnetic field

#### Creation of doubly winding state from zero winding



# Spin-2 case

$$H = \int d\boldsymbol{x} \left[ -\Psi_m^* \frac{\hbar^2}{2M} \nabla^2 \Psi_m + \frac{c_0}{2} \rho^2 + \frac{c_1}{2} \boldsymbol{F}^2 + \frac{c_2}{2} |A_{20}|^2 \right]$$

$$A_{00}(\boldsymbol{x}) = 2\Psi_2(\boldsymbol{x})\Psi_{-2}(\boldsymbol{x}) - 2\Psi_1(\boldsymbol{x})\Psi_{-1}(\boldsymbol{x}) + \Psi_0(\boldsymbol{x})^2$$

Singlet-pair amplitude

# Spin-2 case

$$H = \int dx \left[ -\Psi_m^* \frac{\hbar^2}{2M} \nabla^2 \Psi_m + \frac{c_0}{2} \rho^2 + \frac{c_1}{2} F^2 + \frac{c_2}{2} |A_{20}|^2 \right]$$
Uniaxial Nematic:  

$$\Psi_U = (0, 0, 1, 0, 0)^T$$

$$U(1)_{\varphi} \times \frac{S_F^2}{(\mathbb{Z}_2)_F}$$
Biaxial Nematic:  

$$\Psi_B = (1, 0, 0, 0, 1)^T / \sqrt{2}$$

$$\frac{U(1)_{\varphi} \times SO(3)_F}{(D_4)_{\varphi+F}}$$

$$c_2 = 4c_1$$

$$C_1$$

$$C_1$$

$$U_C = (1, 0, 0, \sqrt{2}, 1)^T / \sqrt{3}$$

$$\frac{U(1)_{\varphi} \times SO(3)_F}{(T)_{\varphi+F}}$$

$$C_2$$

$$Ferromagnetic:$$

$$\Psi_F = (1, 0, 0, 0, 0)^T$$

$$\frac{SO(3)_{\varphi+F}}{(\mathbb{Z}_2)_{\varphi+F}}$$

# Topological excitation in cyclic state



Topological excitations can be labeled by12 rotations keeping tetrahedron invariant

# Non-Abelian topological excitation!

# Topological excitation in cyclic state

#### 1/2-spin vortex



# Topological excitation in cyclic state

1/3 vortex





# Dynamics of topological excitations

#### Collision of topological excitations Quantum turbulence

C Collision of vortices with non-commutative charge forms a new "**rung**" vortex connecting two vortices



### Collision dynamics of topological excitations



### Topological charge of topological excitation



# Topological invariant of excitations can be fixed by a closed path encircling the excitations

# **Collision of Vortex**



#### Passing dynamics is possible for Abelian case

# **Collision of Vortex**



#### Rung $BA^{-1}$ is formed through the

Physics of topological excitation is the short in condensates

# **Collision of Vortex**



Rung disappears for the same charge resulting

# **Linked Vortex Rings**


### Quantum turbulence

Turbulent state of BEC (quantum turbulence) can be a model to understand the relation between turbulence and vortices



Vortices in viscous fluid cannot be defined clearly



Vortices in BEC can be defined as quantized vortices which are topological excitations

### Generation of turbulence



### Energy spectrum of quantum turbulence



Quantum turbulence shows the Kolmogorov law which is one of the most important statistical law of turbulence

M. Kobayashi, et al. PRL 94, 065302 (2005)

### Non-Abelian quantum turbulence





Turbulent behavior is strongly affected by the topology

M. Kobayashi, et al. in press

### Summary

- •In BEC, various kinds of topological excitations can be realized.
- •Dynamics of topological excitations are affected by the order-parameter manifold and can dominate the nature of the system.

### Topological charge of topological excitation



# Topological charge of vortex can be fixed by a closed path encircling the vortex

### **Collision of Vortices**



### **Collision of Same Vortices**



### **Collision of Different Commutative Vortices**



### **Collision of Different Non-commutative Vortices**



### **Linked Vortices**



#### Nematic liquid crystal

$$CH_{3}O - \bigcirc - CH = N - \bigcirc - C_{4}H_{9}$$



Topological excitations in nematic liquid crystal



Topological excitation related to rotational symmetry breaking

States with topological excitations cannot be continuously transformed to states without topological excitations





This is topological excitation in 2D system but not topological excitation in 3D system



This is always topological excitation

Characteristics of topological excitations strongly depend on the internal degrees of freedom (topology) of the system

### Observation of topological excitations in nemati c liquid crystal



near surface

#### far from surface

### **Biaxial nematic liquid crystal**



### Topological excitations and homotopy

XY-spin system



In XY-spin system, local spin (order parameter) can be expressed by a point in a circle

 $\rightarrow$ Order-parameter manifold

### Topological defects and homotopy



Topological excitations can be characterized by how many times the state rotates the circle along the closed path

### Heisenberg-spin

Order parameter can be expressed by a point in a sphere





#### Topological excitations can never be stabilized

### Excitations in symmetry broken systems via phase transitions Liquid $\rightarrow$ Solid transition (spontaneous symmetry breaking)

Liquid







Solid (crystal)

Free energy is invariant under translational and rotational transformations
System is also invariant under

•System is also invariant under transformations

Free energy is invariant under translational and rotational transformations
System is not invariant under transformations (symmetry breaking)





Solid

Atoms are little influenced by other atoms.

Positions and orientations of atoms are strongly affected by other atoms and fixed (spontaneous symmetry breaking).

### Topological excitations appear in symmetry broken systems In crystal



Topological excitation related to translational symmetry breaking

Physics of topological excitation in Bose-Einstein condensates



Topological excitation related to rotational symmetry breaking

# $U\!(1)$ gauge symmetry breaking in BEC

Mean-field Hamiltonian at the zero temperature

$$H = \int d\boldsymbol{x} \left[ \frac{\hbar^2}{2M} \nabla \Psi^*(\boldsymbol{x}) \nabla \Psi(\boldsymbol{x}) + \frac{c_0}{2} |\Psi(\boldsymbol{x})|^4 \right]$$

$$egin{aligned} \Psi(m{x}) &= |\Psi(m{x})| \exp[i arphi(m{x})] \ 
ho(m{x}) &= |\Psi(m{x})|^2 : \ ext{Fluid density} \ m{v}(m{x}) &= rac{\hbar}{m} 
abla arphi(m{x}) : \ ext{Fluid velocity} \end{aligned}$$

### **Point-like excitation**



### **Point-like excitation**



Point-like excitation cannot exist in Ferromagnetic phase  $\frac{G}{H} \simeq SO(3)_{\varphi+F}$ 

### Vortex ring in polar phase



### $\pi_3$ excitation and Hopf mapping



### $\pi_3$ excitation and Hopf mapping



### Point-like excitation and 2D skyrmion





L. S. Leslie, et al. arXiv:0910.4918

$$\pi_2 \left[ \frac{U(1)_{\mathrm{G}} \times (S^2)_{\mathrm{S}}}{(\mathbb{Z}_2)_{\mathrm{G}+\mathrm{S}}} \right] \cong \pi_2[(S^2)_{\mathrm{S}}] \cong (\mathbb{Z})_{\mathrm{S}}$$

### Two 2D skyrmion





### Inversion of topological invariant



### Vorton excitation



### Spin-2 case

$$H = \int dx \left[ -\Psi_m^* \frac{\hbar^2}{2M} \nabla^2 \Psi_m + \frac{c_0}{2} \rho^2 + \frac{c_1}{2} F^2 + \frac{c_2}{2} |A_{20}|^2 \right]$$
Uniaxial Nematic:  

$$\Psi_U = (0, 0, 1, 0, 0)^T$$

$$U(1)_{\varphi} \times \frac{S_F^2}{(\mathbb{Z}_2)_F}$$
Biaxial Nematic:  

$$\Psi_B = (1, 0, 0, 0, 1)^T / \sqrt{2}$$

$$\frac{U(1)_{\varphi} \times SO(3)_F}{(D_4)_{\varphi+F}}$$

$$c_2 = 4c_1$$

$$C_1$$

$$C_1$$

$$U_C = (1, 0, 0, \sqrt{2}, 1)^T / \sqrt{3}$$

$$\frac{U(1)_{\varphi} \times SO(3)_F}{(T)_{\varphi+F}}$$

$$C_2$$

$$Ferromagnetic:$$

$$\Psi_F = (1, 0, 0, 0, 0)^T$$

$$\frac{SO(3)_{\varphi+F}}{(\mathbb{Z}_2)_{\varphi+F}}$$

### Nematic phase of spin-2

$$H = \int d\boldsymbol{x} \left[ -\Psi_m^* \frac{\hbar^2}{2M} \nabla^2 \Psi_m + \frac{c_0}{2} \rho^2 + \frac{c_1}{2} \boldsymbol{F}^2 + \frac{c_2}{2} |A_{20}|^2 \right]$$



Uniaxial Nematic:  

$$\Psi_{\rm U} = (0, 0, 1, 0, 0)^T$$

$$U(1)_{\varphi} \times \frac{S_F^2}{(\mathbb{Z}_2)_F}$$

# Biaxial Nematic: $\Psi_{\rm B} = (1, 0, 0, 0, 1)^T / \sqrt{2}$ $\frac{U(1)_{\varphi} \times SO(3)_F}{(D_4)_{\varphi+F}}$

Two states are degenerate via another continuous degree of freedom



New order-parameter manifold

$$\frac{U(1)_{\varphi} \times S_F^4}{(\mathbb{Z}_2)_{\varphi+F}}$$
# Quasi-Nambu-Goldstone current



S. Uchino, et al., PRL in press

#### Decay of vortex in biaxial nematic phase

#### Emission of quasi-Nambu-Goldstone current

Physics of topological excitation in Bose-Einstein condensates

## **Cyclic State vs. Singlet-trio Condensed State**

M. Koashi, and M. Ueda. PRL **84**, 1066 (2000) For  $c_1 > 0, c_2 > 0$ Singlet-trio condensed state (only U(1) is broken)  $|\Psi\rangle = \left| e^{i\varphi} \left( \frac{\sqrt{2\hat{a}_0}(\hat{a}_0^{\dagger 2} - 3a_1^{\dagger}a_{-1}^{\dagger} - 6a_2^{\dagger}a_{-2}^{\dagger}) + 3\sqrt{3}(a_1^{\dagger 2}a_{-2}^{\dagger} + a_{-1}^{\dagger 2}a_2^{\dagger})}{\sqrt{35}} \right) \right|^{N/3} |0\rangle$ Transition occurs under  $\sim 1\mu G$  $\Psi = e^{i\varphi} e^{-i\hat{F} \cdot \alpha} \begin{pmatrix} i/2 \\ 0 \\ 1/\sqrt{2} \\ 0 \\ i/2 \end{pmatrix}$ Cyclic state (U(1)  $\times$  SO(3) is broken)  $|\Psi\rangle = \left|\sum \Psi_m a_m^{\dagger}\right|^{\prime\prime} |0\rangle$ 

Physics of topological excitation in Bose-Einstein condensates

### Nematic State vs. Singlet-pair Condensed State

M. Koashi, and M. Ueda. PRL **84**, 1066 (2000) For  $c_1 > 0, c_2 < 0$ Singlet-pair condensed state (only U(1) is broken)  $|\Psi\rangle = \left| e^{i\varphi} \left( \frac{\hat{a}_0^{\dagger 2} - 2a_1^{\dagger}a_{-1}^{\dagger} + a_2^{\dagger}a_{-2}^{\dagger}}{\sqrt{5}} \right) \right|^{N/2} |0\rangle$ Transition occurs under  $\sim 1\mu G$ Nematic state (U(1) × SO(3) is broken)  $|\Psi\rangle = \left[\sum_{m} \Psi_{m} a_{m}^{\dagger}\right]^{N} |0\rangle \qquad \Psi = e^{i\varphi} e^{-i\hat{F}\cdot\boldsymbol{\alpha}} \begin{pmatrix} 0\\0\\1\\0\\0 \end{pmatrix} \text{ or } \begin{pmatrix} 1\\0\\0\\1 \end{pmatrix} /\sqrt{2}$ 

Physics of topological excitation in Bose-Einstein condensates