Topology and topological defects appearing in Bose-Einstein condensate

Michikazu Kobayashi (University of Tokyo)

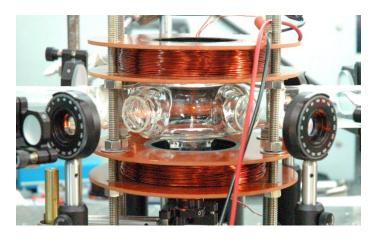
Model Equations in Bose-Einstein Condensation and Relate topics (Dec. 7, 2010)

Contents

- 1. Scalar BEC and quantized vortices
- 2. Topology and topological defects in spinor BEC
- 3. Summary

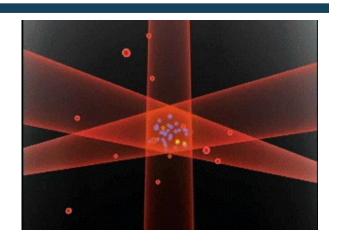
Atomic Bose-Einstein condensates

Dilute alkali atomic Bose-Einstein condensates has been realized in 1997

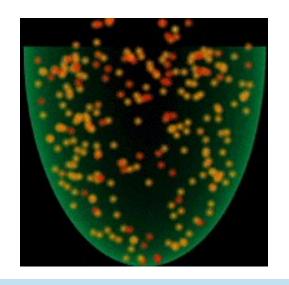


Trap of atoms

⁸⁷Rb, ²³Na, ⁷Li, ¹H, ⁸⁵Rb, ⁴¹K, ⁴He, ¹³³Cs, ¹⁷⁴Yb, ⁵²Cr, ⁴⁰Ca, ⁸⁴Sr



Laser cooling of atoms



Evaporating cooling of atoms

Hamiltonian and Gross-Pitaevskii equation

Mean-field Hamiltonian at the zero temperature

$$\mathcal{H} = \int d\boldsymbol{x} \left[\frac{\hbar^2}{2M} |\nabla \Psi|^2 + \frac{c_0}{2} |\Psi|^4 \right]$$

Time evolution of BEC : Gross-Pitaevskii equation

$$i\hbar \frac{\partial \Psi}{\partial t} = \frac{\delta \mathcal{H}}{\delta \Psi} = \left[-\frac{\hbar^2}{2M} \nabla^2 + c_0 |\Psi|^2 \right] \Psi$$

$$\Psi=|\Psi|\exp[\mathrm{i}\phi]$$
 $ho=|\Psi|^2$: Density of BEC $oldsymbol{v}=rac{\hbar}{m}
abla\phi$: Velocity field of BEC

U(1) gauge symmetry breaking in BEC

$$\mathcal{H} = \int d\boldsymbol{x} \left[\frac{\hbar^2}{2M} |\nabla \Psi|^2 + \frac{c_0}{2} |\Psi|^4 \right]$$

Invariant under U(1) gauge transformation : $\Psi \to e^{i\phi} \Psi$: symmetry G

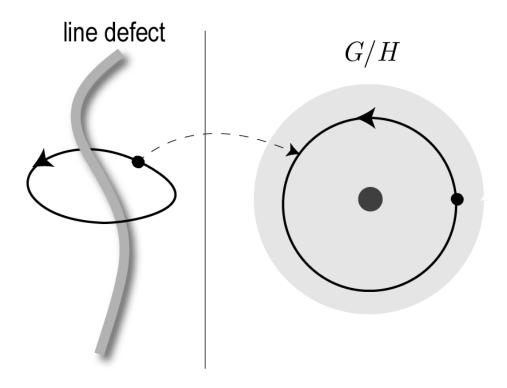
In Bose condensed system, phase ϕ is fixed to one value : Symmetry H=1

Order-parameter manifold (degrees of freedom of Ψ)

$$G/H \cong U(1) \cong S^1$$

Topological defects (fundamental group)

Line defect (fundamental group)



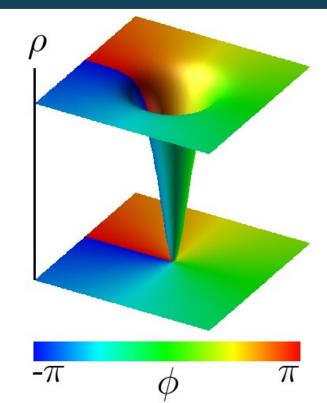
Along the closed path, by how many times the path rotates the singular point of Ψ (fundamental group π_1)

Topological defects in BEC (quantized vortex)

$$G/H \cong U(1) \cong S^1$$

$$\pi_1(S^1) \cong G$$
 (quantized vortex)

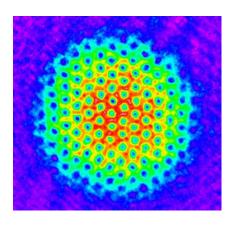
Quantized vortices $(\rho(\mathbf{x}) = 0)$ around which phase $\phi(\mathbf{x})$ changes by integer multiple of 2π : quantized vortices



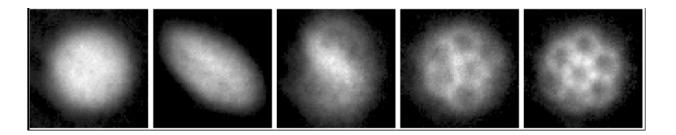
$$\Psi=|\Psi|\exp[\mathrm{i}\phi]$$
 $ho=|\Psi|^2:$ Density of BEC $oldsymbol{v}=rac{\hbar}{m}
abla\phi:$ Velocity field of BEC

Experimental observation of vortices

Vortex lattice and its formation in atomic BEC



Vortex lattice in ⁸⁷Rb BEC



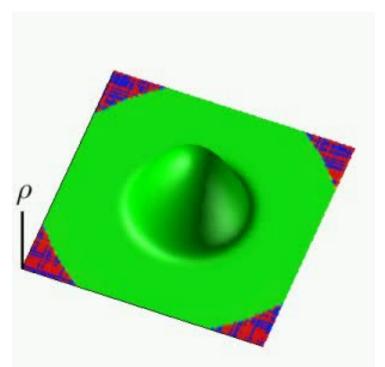
K. W. Madison et al. PRL **86**, 4443 (2001)

Numerical simulation of vortex lattice formation

2D GP equation (in non-dimensional form)

$$(i - \gamma)\frac{\partial \Psi}{\partial t} = \left[-\frac{\nabla^2}{2} - \mu + \frac{\omega^2 \mathbf{x}^2}{2} + c_0 |\Psi|^2 + i\Omega_z \mathbf{x} \times \nabla \right] \Psi$$

K. Kasamatsu et al. PRA 67, 033610 (2003)



 γ : dissipation term

 $\boldsymbol{\mu}$: chemical potential

 ω : harmonic trap potential

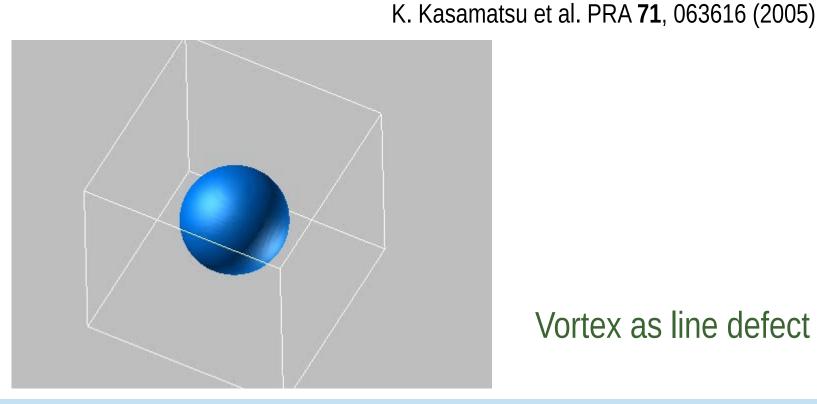
 Ω_z : external rotation

t=0 : Stationary state with $\Omega_{z}=0$

Numerical simulation of vortex lattice formation

3D GP equation (in non-dimensional form)

$$(i - \gamma)\frac{\partial \Psi}{\partial t} = \left[-\frac{\nabla^2}{2} - \mu + \frac{\omega^2 \mathbf{x}^2}{2} + c_0 |\Psi|^2 + i\Omega_z (\mathbf{x} \times \nabla)_z \right] \Psi$$

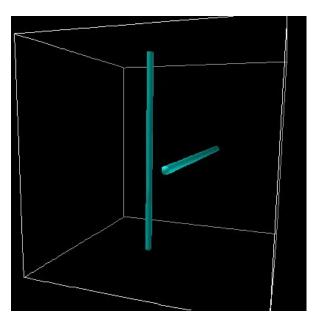


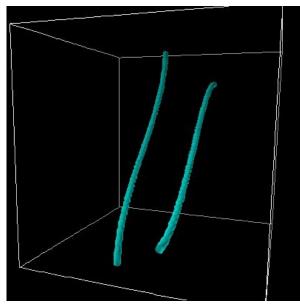
Vortex as line defect

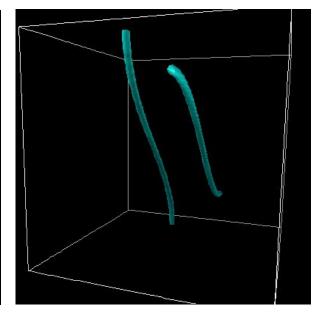
Reconnection of vortices

$$i\frac{\partial \Psi}{\partial t} = \left[-\frac{\nabla^2}{2} + c_0 |\Psi|^2 \right] \Psi$$

Neumann boundary condition







BEC with larger manifold: 2 - component BEC

Different atom species: 87Rb - 41K

Mixture of Isotope: 87Rb - 85Rb

Different hyperfine state : 87 Rb (F=1, $m_{\scriptscriptstyle F}=$ -1) - 87 Rb (F=2, $m_{\scriptscriptstyle F}=1$)

$$\mathcal{H} = \int d\mathbf{x} \sum_{i=0}^{1} \left[\frac{\hbar^2}{2M} |\nabla \Psi_i|^2 + \frac{c_0}{2} |\Psi_i|^4 + \frac{c_1}{2} |\Psi_i|^2 |\Psi_{1-i}|^2 \right]$$

$$i\hbar \frac{\partial \Psi_0}{\partial t} = \left[-\frac{\hbar^2}{2M} \nabla^2 + c_0 |\Psi_0|^2 + c_1 |\Psi_1|^2 \right] \Psi_0$$

$$i\hbar \frac{\partial \Psi_1}{\partial t} = \left[-\frac{\hbar^2}{2M} \nabla^2 + c_0 |\Psi_1|^2 + c_1 |\Psi_0|^2 \right] \Psi_1$$

$$G/H \cong S^1 \times S^1$$

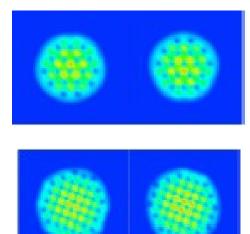
BEC with larger manifold: 2 - component BEC

$$G/H \cong S^1 \times S^1$$

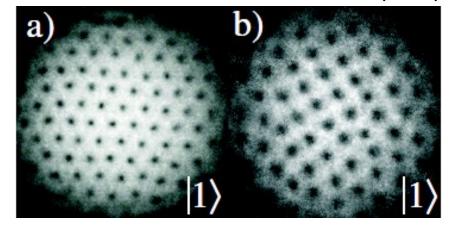
$$i\hbar \frac{\partial \Psi_0}{\partial t} = \left[-\frac{\hbar^2}{2M} \nabla^2 + V + c_0 |\Psi_0|^2 + c_1 |\Psi_1|^2 \right] \Psi_0$$

$$i\hbar \frac{\partial \Psi_1}{\partial t} = \left[-\frac{\hbar^2}{2M} \nabla^2 + V + c_0 |\Psi_1|^2 + c_1 |\Psi_0|^2 \right] \Psi_1$$

K. Kasamatsu et al. PRL **91**, 150406 (2003)



V. Schweikhard et al. PRL **93**, 210403 (2004)

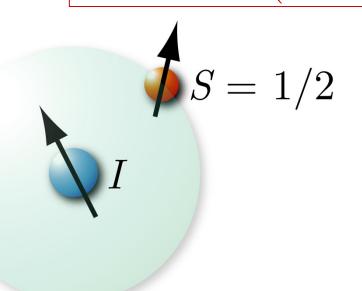


Spinor BEC

BEC with spin degrees of freedom

Hyperfine coupling of electron end nuclear spin

$$(F = I + L + S)$$



⁸⁷ Rb, ²³ Na, ⁷ Li, ⁴¹ K	F=1, 2
⁸⁵ Rb	F=2, 3
¹³³ Cs	F=3, 4
⁵² Cr	S=3, I=0

Spinor BEC

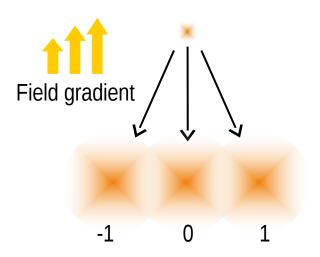
BEC with spin degrees of freedom

$$F = 2 \begin{cases} m_F = 2 \\ m_F = 1 \\ m_F = 0 \\ m_F = -1 \\ m_F = -2 \end{cases} F = 1 \begin{cases} m_F = 1 \\ m_F = 0 \\ m_F = -1 \end{cases}$$
 Fi

Spin 1: 3-component BEC

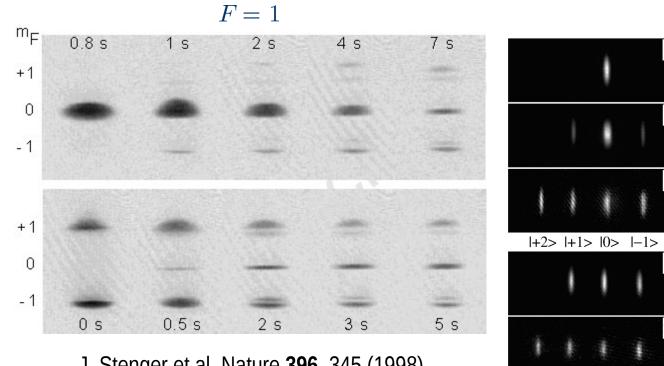
$$\Psi = (\psi_1, \, \psi_0, \, \psi_{-1})$$

Multicomponent BEC labeled by magnetic sublevel $m_{\scriptscriptstyle F}$



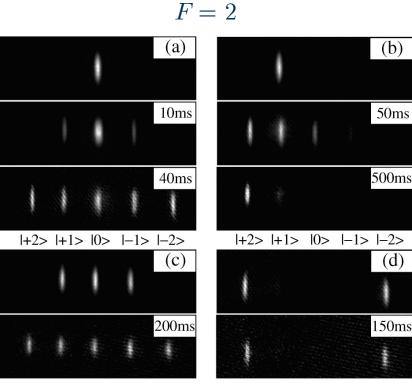
Spinor BEC

Stern-Gerlach experiment



J. Stenger et al. Nature **396**, 345 (1998)

Rotation of Spin can be observed



H. Schmaljohann et al. PRL **92**, 040402 (2004)

Theory of Spinor BEC

Hamiltonian of spinor Bosons

$$H = -\int d\boldsymbol{x} \, \frac{\hbar^2}{2M} \nabla \Psi_m^{\dagger}(\boldsymbol{x}) \nabla \Psi_m(\boldsymbol{x})$$

$$+ \frac{1}{2} \int d\boldsymbol{x}_1 \int d\boldsymbol{x}_2 \Psi_{m_1}^{\dagger}(\boldsymbol{x}_1) \Psi_{m_2}^{\dagger}(\boldsymbol{x}_2) V_{m_1 m_2 m_1' m_x'}(\boldsymbol{x}_1 - \boldsymbol{x}_2) \Psi_{m_2'}(\boldsymbol{x}_2) \Psi_{m_1'}(\boldsymbol{x}_1)$$

Low energy contact interaction (l = 0)

$$V_{m_1 m_2 m_1' m_x'}(\boldsymbol{x}_1 - \boldsymbol{x}_2) = \delta(\boldsymbol{x}_1 - \boldsymbol{x}_2) \sum_{F=0,2,4} g_F \sum_{m_1,m_2,m_1',m_2',M} O_{m_1 m_2}^{F,M} \left(O_{m_1' m_2'}^{F,M} \right)^*$$

Mean-field Hamiltonian (spin-1)

$$H = \int d\boldsymbol{x} \left[\frac{\hbar^2}{2M} \sum_{m=-1}^{1} \nabla \Psi_m^* \nabla \Psi_m + \underbrace{\left(\frac{c_0}{2} \rho^2\right)}_{\text{Density}} + \underbrace{\left(\frac{c_1}{2} \boldsymbol{F}^2\right)}_{\text{Spin}} \right]$$

$$F_{z} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \quad F_{+} = \begin{pmatrix} 0 & \sqrt{2} & 0 \\ 0 & 0 & \sqrt{2} \\ 0 & 0 & 0 \end{pmatrix} \quad \rho = \sum_{m=-1}^{1} |\Psi_{m}|^{2}$$

$$F_{-} = F_{+}^{T}, \quad F_{x} = \frac{F_{+} + F_{-}}{2}, \quad F_{y} = \frac{F_{+} - F_{-}}{2i} \qquad \mathbf{F} = (\Psi_{1}^{*} \Psi_{0}^{*} \Psi_{-1}^{*})(F_{x}, F_{y}, F_{z}) \begin{pmatrix} \Psi_{1} \\ \Psi_{0} \\ \Psi_{-1} \end{pmatrix}$$

Gauge and spin rotation symmetry of wave function are broken

$$\Psi' = e^{i\phi} e^{-i\mathbf{n}\cdot\mathbf{F}\alpha} \Psi \ (G = U(1)_{\mathbf{F}} \times SO(3)_{\phi})$$

Possible phase

$$H = \int d\boldsymbol{x} \left[\frac{\hbar^2}{2M} \sum_{m=-1}^{1} \nabla \Psi_m^* \nabla \Psi_m + \frac{c_0}{2} \rho^2 + \frac{c_1}{2} \boldsymbol{F}^2 \right]$$

 $c_1>0$: polar (23Na BEC)

$$e^{i\phi}e^{-im{n}\cdot\hat{m{F}}lpha}\left(egin{array}{c} 0 \\ 1 \\ 0 \end{array}
ight)$$

$$\mathbf{F} = 0$$

$$\frac{G}{H} \simeq \frac{U(1)_{\phi} \times S_F^2}{(\mathbb{Z}_2)_{\phi+F}}$$

 $c_1 < 0$: Ferromagnetic (87Rb BEC)

$$e^{i\phi}e^{-ioldsymbol{n}\cdot\hat{oldsymbol{F}}lpha}\left(egin{array}{c}1\0\0\end{array}
ight)$$

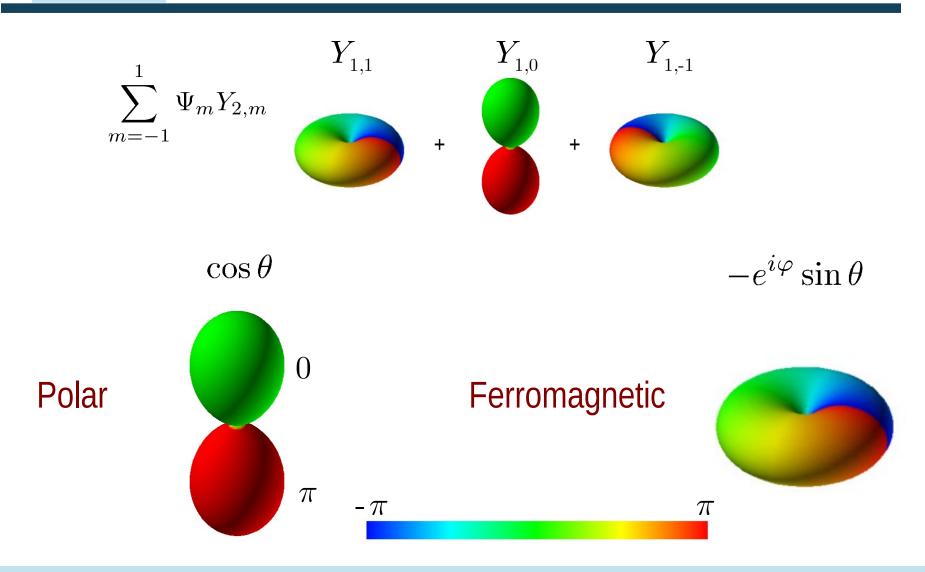
$$F \neq 0$$

$$\frac{G}{H} \simeq SO(3)_{\phi+F}$$

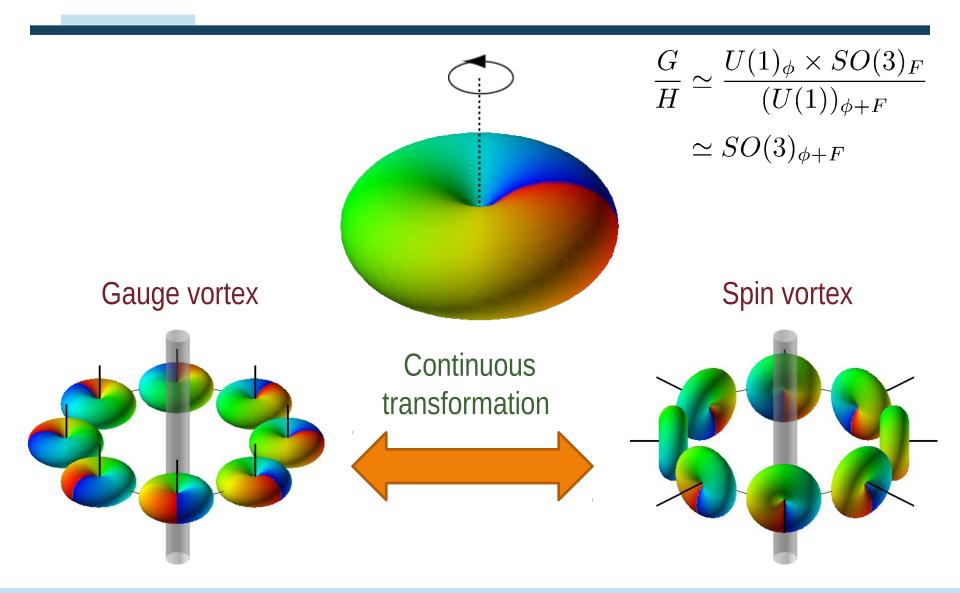
Gross-Pitaevskii equation

$$i\hbar \frac{\partial \Psi_{\pm 1}}{\partial t} = \left(-\frac{\hbar^2}{2M}\nabla^2 + V + c_0\rho\right)\Psi_{\pm 1} + c_1\left(\frac{1}{\sqrt{2}}F_{\mp}\Psi_0 \pm F_z\Psi_{\pm}\right)$$
$$i\hbar \frac{\partial \Psi_0}{\partial t} = \left(-\frac{\hbar^2}{2M}\nabla^2 + V + c_0\rho\right)\Psi_0 + \frac{c_1}{\sqrt{2}}\left(F_{+}\Psi_1 + F_{-}\Psi_{-1}\right)$$

Graphical image by the spherical Harmonics



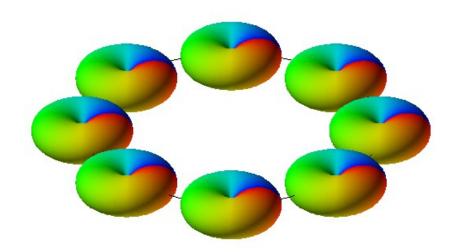
Topological defect in Ferromagnetic state



Topological defect in Ferromagnetic state

$$\pi_1[SO(3)_{\phi+F}] \cong \mathfrak{o}_2$$

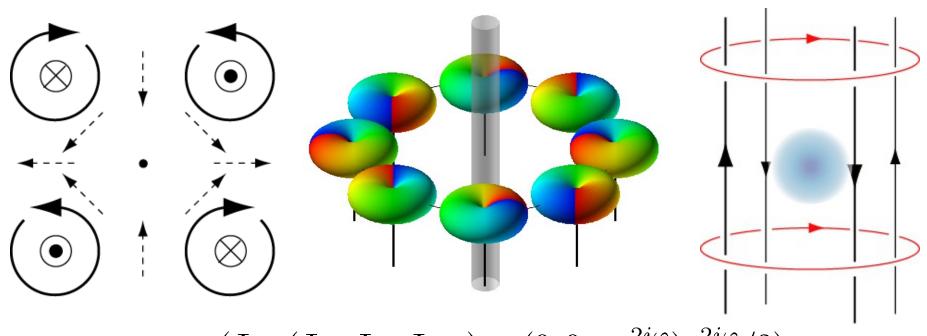
Doubly winding state is no longer topological defect



T. Ishoshima, et al. PRA **61**, 063610 (1999)

Topological excitation in Ferromagnetic state

Creation of doubly winding state from zero winding



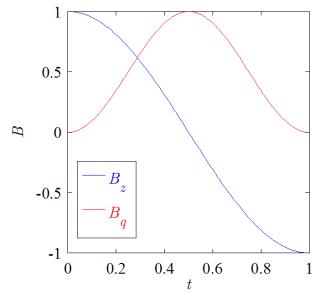
 $(\Psi_1,(\Psi_1,\Psi_0,\Psi_{-1})=(0,0,e^{-2i\varphi})^{-2i\varphi}/2)$ Adiabatic change of quadratic magnetic field

Topological excitation in Ferromagnetic state

Creation of doubly winding state from zero winding

$$i\hbar \frac{\partial \Psi_m}{\partial t} = \left(-\frac{\hbar^2}{2M}\nabla^2 + V + B\right)\Psi_m + \text{interaction}$$

$$B = \begin{pmatrix} B_z & B_q e^{i\varphi}/\sqrt{2} & 0\\ B_q e^{-i\varphi}/\sqrt{2} & 0 & B_q e^{i\varphi}/\sqrt{2}\\ 0 & B_q e^{-i\varphi}/\sqrt{2}/\sqrt{2} & -B_z \end{pmatrix}$$

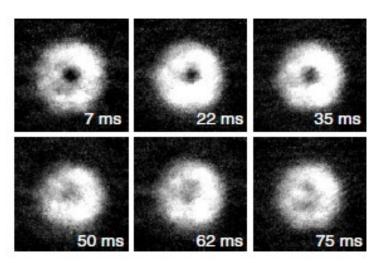


Topological excitation in Ferromagnetic state

Creation of doubly winding state from zero winding

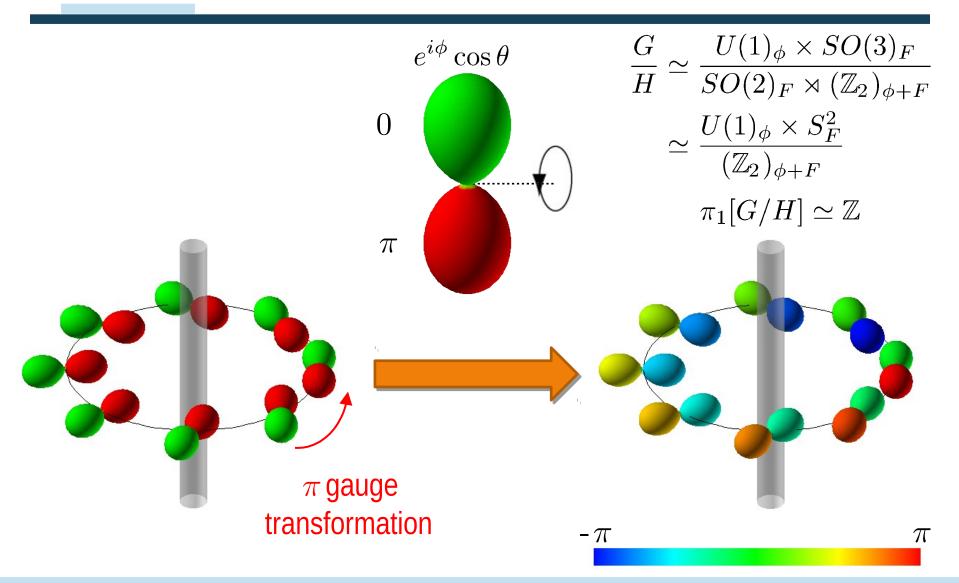
$$i\hbar \frac{\partial \Psi_m}{\partial t} = \left(-\frac{\hbar^2}{2M}\nabla^2 + V + B\right)\Psi_m + \text{interaction}$$

$$B = \begin{pmatrix} B_z & B_q e^{i\varphi}/\sqrt{2} & 0\\ B_q e^{-i\varphi}/\sqrt{2} & 0 & B_q e^{i\varphi}/\sqrt{2}\\ 0 & B_q e^{-i\varphi}/\sqrt{2}/\sqrt{2} & -B_z \end{pmatrix}$$

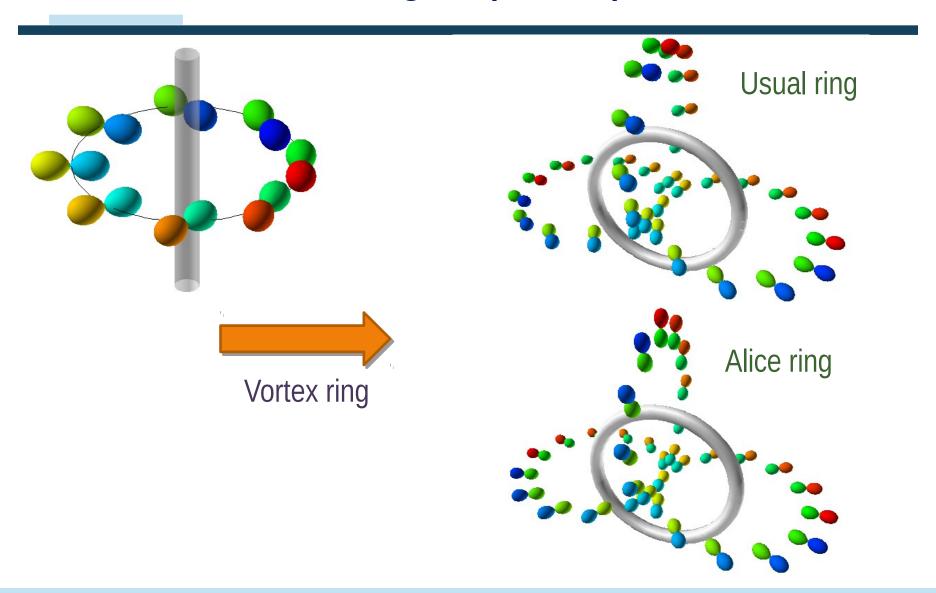


Y. Shin, et al. PRL **93**, 160406 (2004)

Topological defect in polar state



Vortex ring in polar phase



Spin-2 case

$$H = \int d\mathbf{x} \left[-\Psi_m^* \frac{\hbar^2}{2M} \nabla^2 \Psi_m + \frac{c_0}{2} \rho^2 + \frac{c_1}{2} \mathbf{F}^2 + \frac{c_2}{2} |A_{20}|^2 \right]$$

$$A_{00}(\mathbf{x}) = 2\Psi_2(\mathbf{x})\Psi_{-2}(\mathbf{x}) - 2\Psi_1(\mathbf{x})\Psi_{-1}(\mathbf{x}) + \Psi_0(\mathbf{x})^2$$

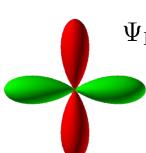
Singlet-pair amplitude

Spin-2 case

$$H = \int d\mathbf{x} \left| -\Psi_m^* \frac{\hbar^2}{2M} \nabla^2 \Psi_m + \frac{c_0}{2} \rho^2 + \frac{c_1}{2} \mathbf{F}^2 + \frac{c_2}{2} |A_{20}|^2 \right|$$

Uniaxial Nematic:

$$\Psi_{\rm U} = (0, 0, 1, 0, 0)^T$$
$$U(1)_{\phi} \times \frac{S_F^2}{(\mathbb{Z}_2)_F}$$



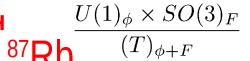
$$\Psi_{\rm B} = (1, 0, 0, 0, 1)^T / \sqrt{2}$$

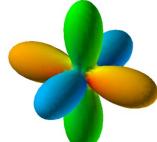
$$\frac{U(1)_{\phi} \times SO(3)_F}{(D_4)_{\phi+F}}$$

$$c_2 = 4c_1$$

C₁ Cyclic:
$$\Psi_{\rm C} = (1,0,0,\sqrt{2},1)^T/\sqrt{3}$$

$$U(1)_{\phi} \times SO(3)_F$$

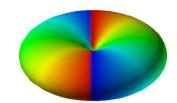




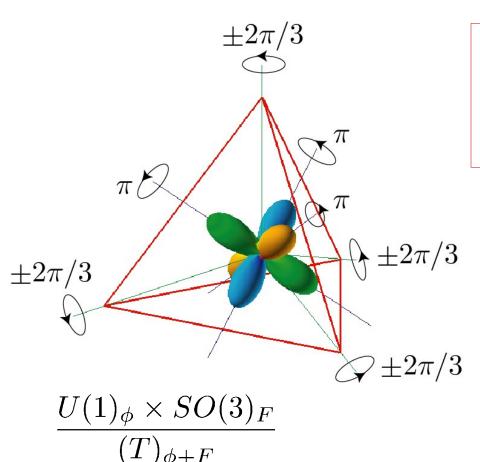
Ferromagnetic:

$$\Psi_{\rm F} = (1, 0, 0, 0, 0)^T$$

$$\frac{SO(3)_{\phi+F}}{(\mathbb{Z}_2)_{\phi+F}}$$



Topological defect in cyclic state

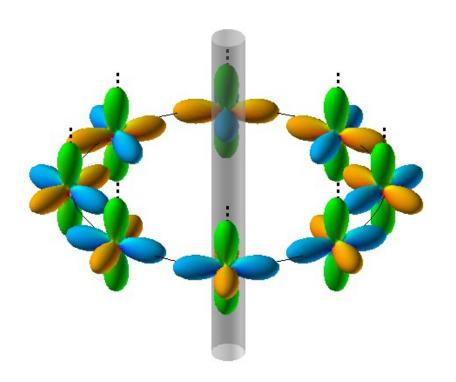


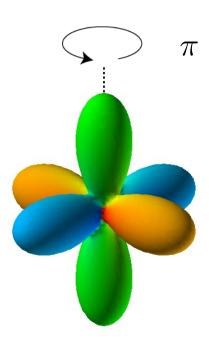
Topological defects can be labeled by 12 rotations keeping tetrahedron invariant

Non-Abelian topological defect!

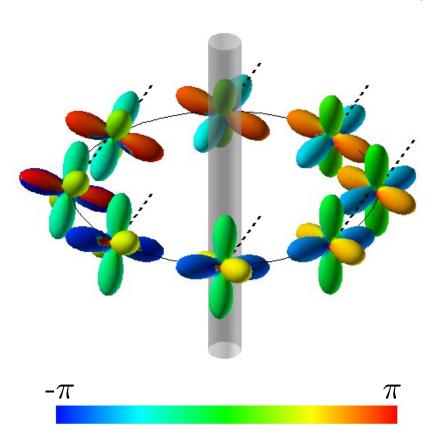
Topological excitation in cyclic state

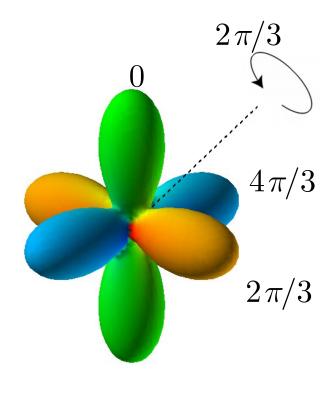
1/2-spin vortex





Topological excitation in cyclic state





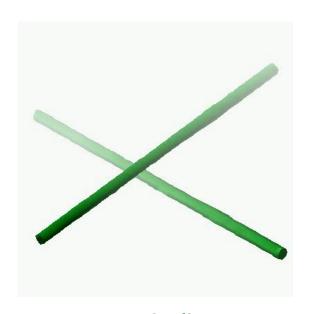
Gross-Pitaevskii Equation

$$\begin{split} i\hbar\frac{\partial\Psi_{2}}{\partial t} &= -\frac{\hbar^{2}}{2M}\nabla^{2}\Psi_{2} + c_{0}\rho\Psi_{2} + c_{1}(F_{-}\Psi_{1} + 2F_{z}\Psi_{2}) + c_{2}A_{20}\Psi_{-2}^{*} \\ i\hbar\frac{\partial\Psi_{1}}{\partial t} &= -\frac{\hbar^{2}}{2M}\nabla^{2}\Psi_{1} + c_{0}\rho\Psi_{1} + c_{1}\left(\frac{\sqrt{6}}{2}F_{-}\Psi_{0} + F_{+}\Psi_{2} + F_{z}\Psi_{1}\right) - c_{2}A_{20}\Psi_{-1}^{*} \\ i\hbar\frac{\partial\Psi_{0}}{\partial t} &= -\frac{\hbar^{2}}{2M}\nabla^{2}\Psi_{0} + c_{0}\rho\Psi_{0} + \frac{\sqrt{6}}{2}c_{1}(F_{-}\Psi_{-1} + F_{+}\Psi_{1}) + c_{2}A_{20}\Psi_{0}^{*} \\ i\hbar\frac{\partial\Psi_{-1}}{\partial t} &= -\frac{\hbar^{2}}{2M}\nabla^{2}\Psi_{-1} + c_{0}\rho\Psi_{-1} + c_{1}\left(\frac{\sqrt{6}}{2}F_{+}\Psi_{0} + F_{-}\Psi_{-2} - F_{z}\Psi_{-1}\right) - c_{2}A_{20}\Psi_{1}^{*} \\ i\hbar\frac{\partial\Psi_{-2}}{\partial t} &= -\frac{\hbar^{2}}{2M}\nabla^{2}\Psi_{-2} + c_{0}\rho\Psi_{-2} + c_{1}(F_{+}\Psi_{-1} - 2F_{z}\Psi_{-2}) + c_{2}A_{20}\Psi_{2}^{*} \end{split}$$

Collision of vortices with non-commutative charge forms a new "rung" vortex connecting two vortices

Abelian excitation

Passing

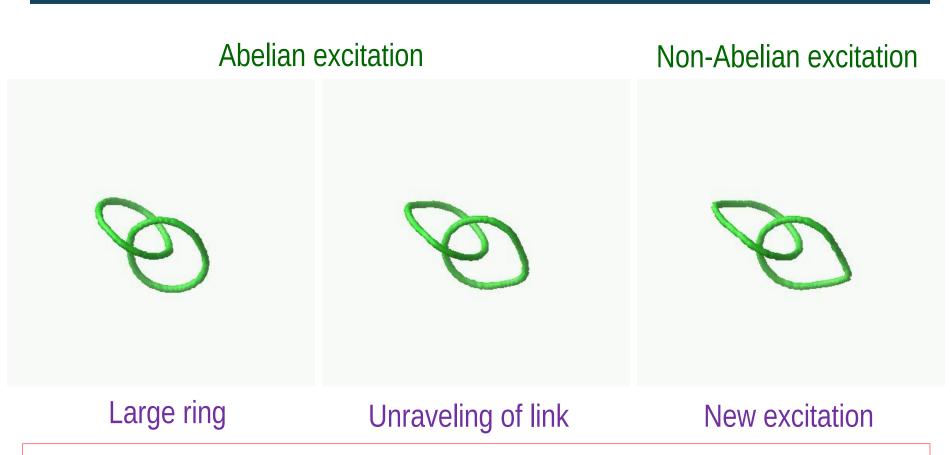


Non-Abelian excitation

Rung vortex

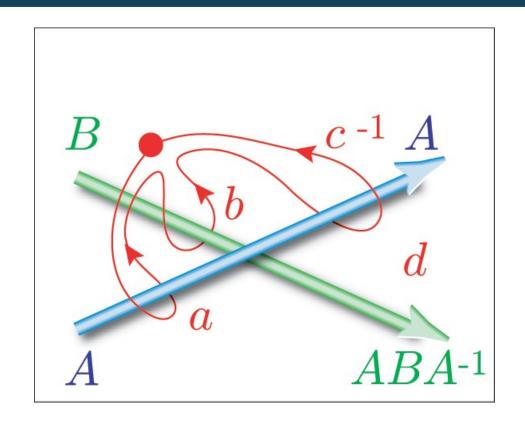
M. Kobayashi, et al. PRL **103**, 115301(2009)

Collision dynamics of topological excitations



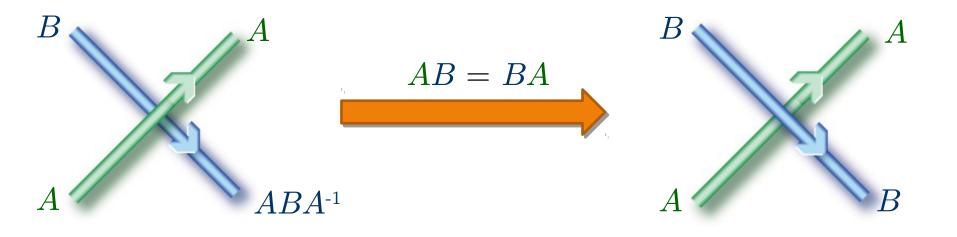
Linked non-Abelian excitations cannot unravel because of the formation of the new excitation.

Topological charge of topological excitation



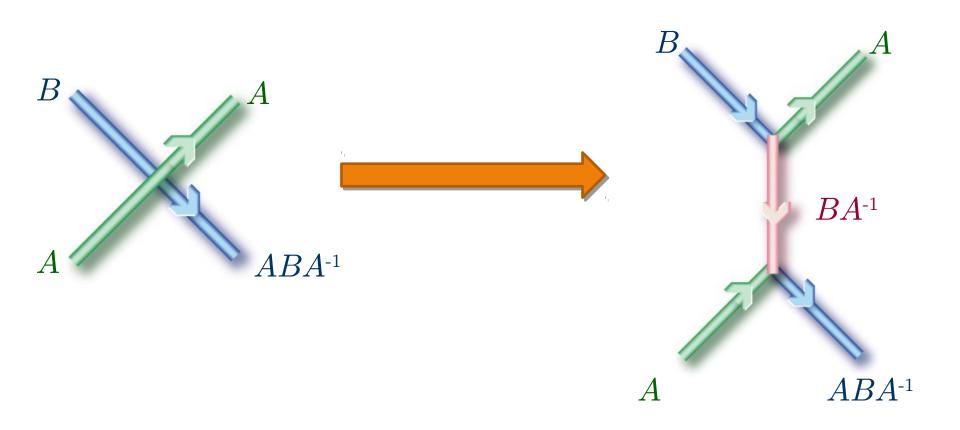
Topological invariant of excitations can be fixed by a closed path encircling the excitations

Collision of Vortex



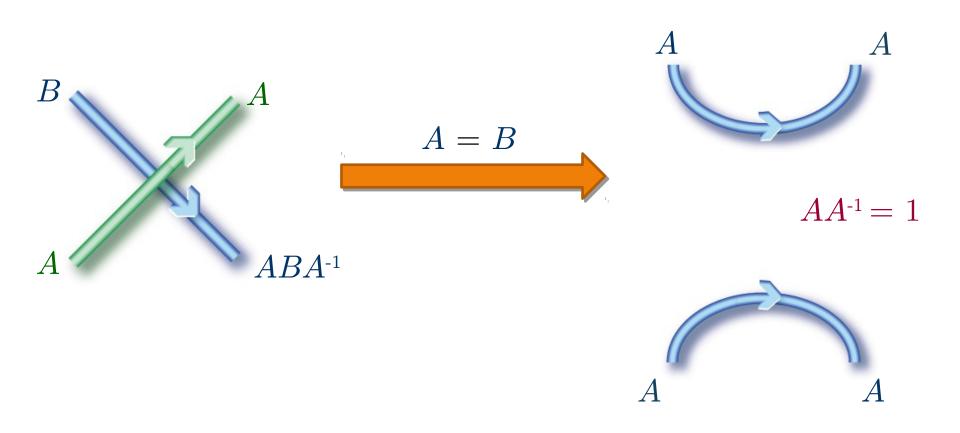
Passing dynamics is possible for Abelian case

Collision of Vortex



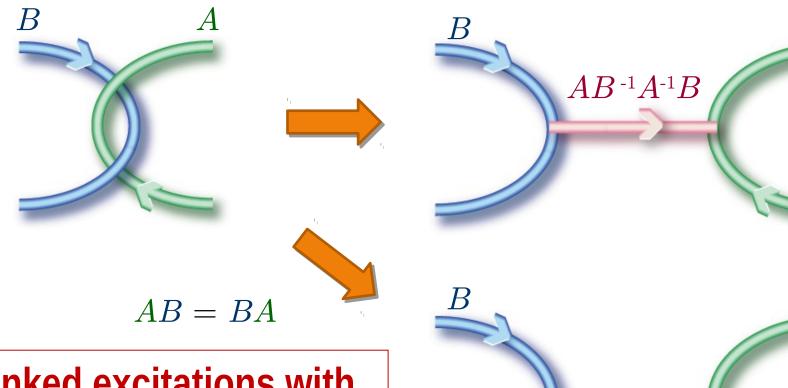
Rung BA^{-1} is formed through the

Collision of Vortex

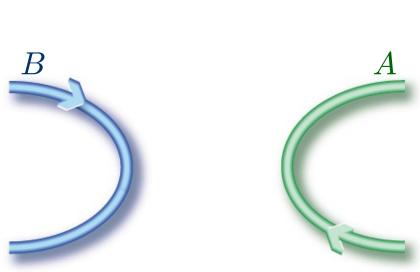


Rung disappears for the same charge resulting

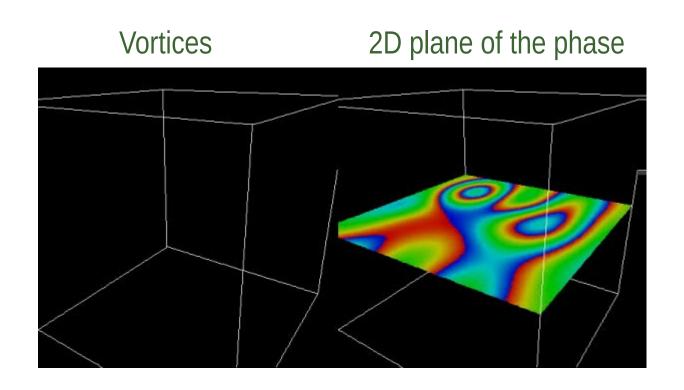
Linked Vortex Rings



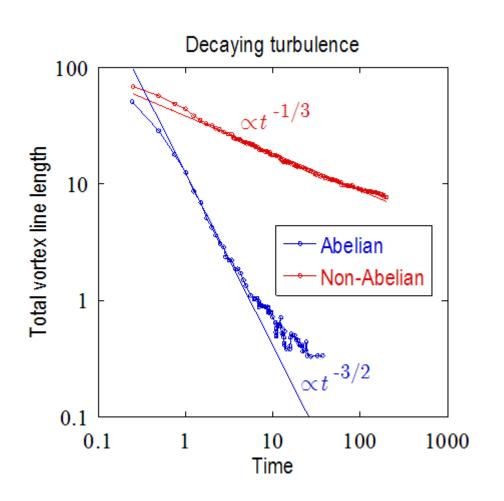
Linked excitations with non-Abelian invariants never unravel.

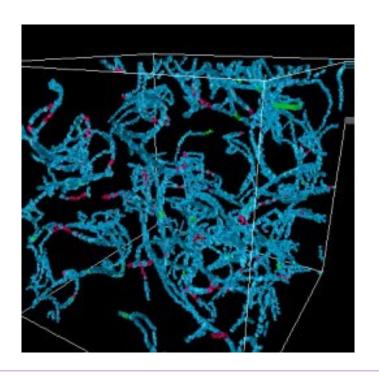


Quantum turbulence



Non-Abelian quantum turbulence





Turbulent behavior is strongly affected by topology

M. Kobayashi, et al. in press

Summary

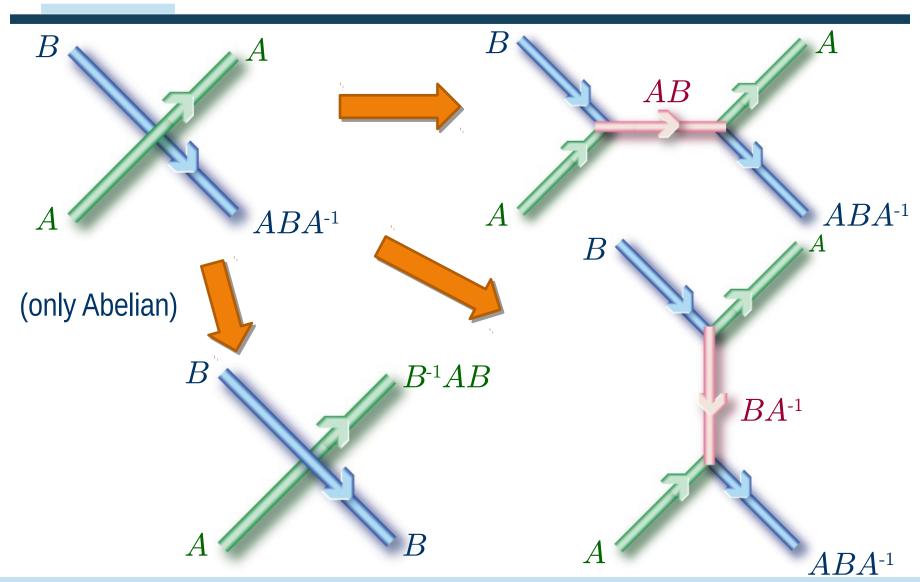
- •In BEC, various kinds of topological excitations can be realized.
- •Dynamics of topological excitations are affected by the order-parameter manifold and can dominate the nature of the system.

Topological charge of topological excitation

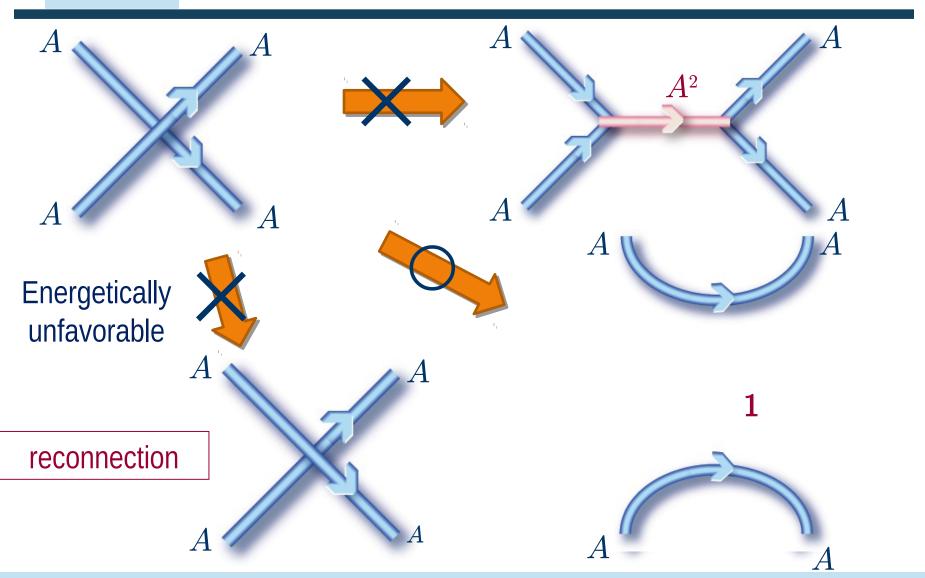


Topological charge of vortex can be fixed by a closed path encircling the vortex

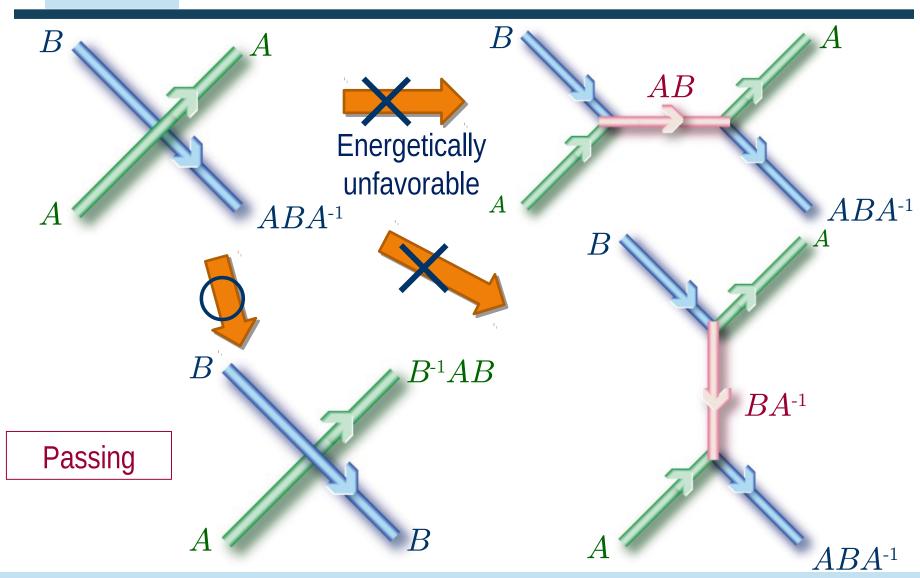
Collision of Vortices



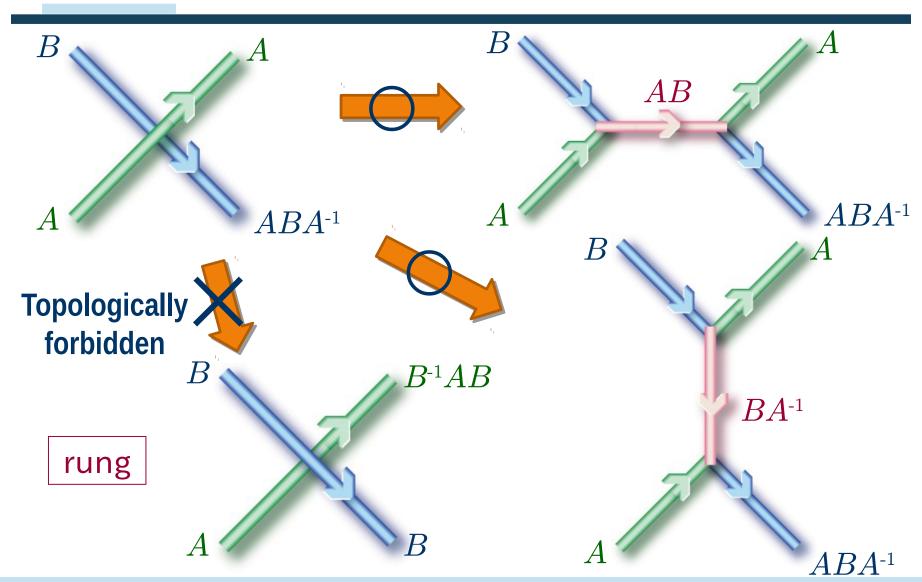
Collision of Same Vortices



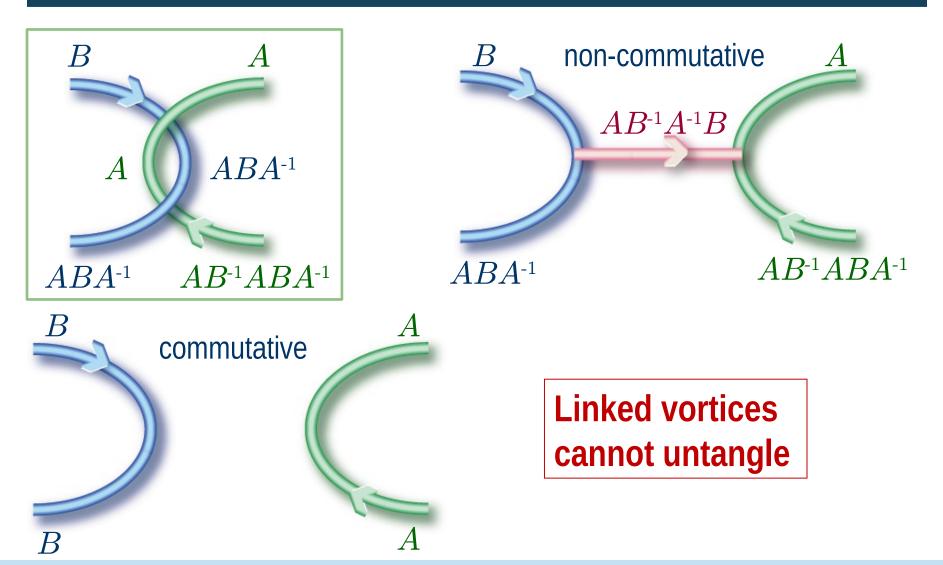
Collision of Different Commutative Vortices



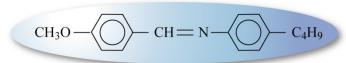
Collision of Different Non-commutative Vortices

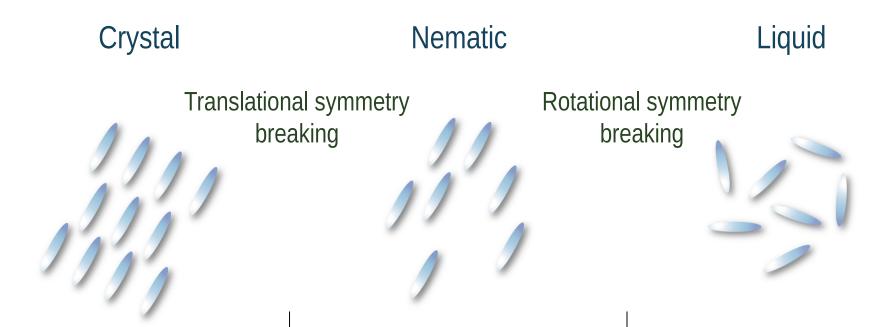


Linked Vortices

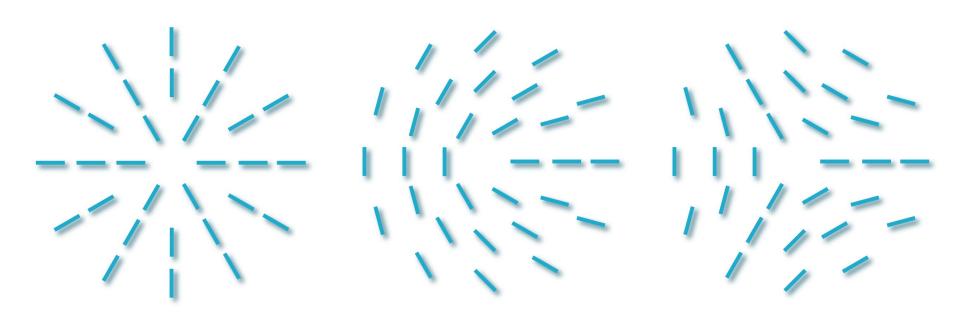


Nematic liquid crystal



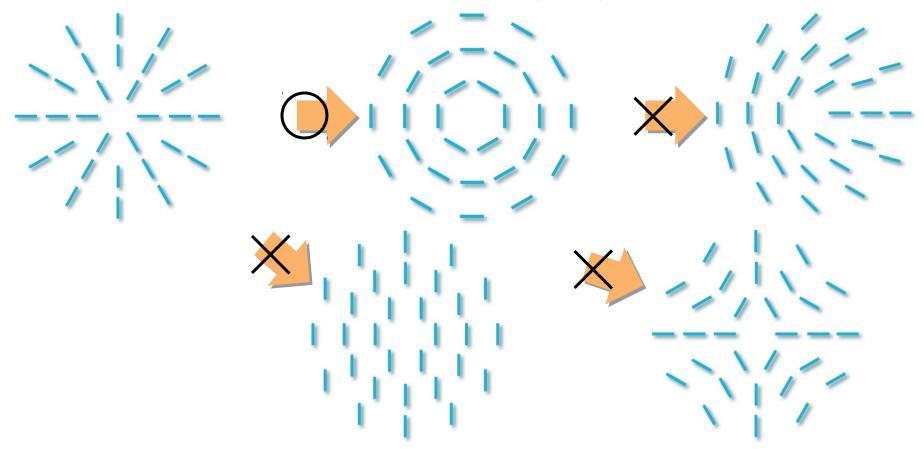


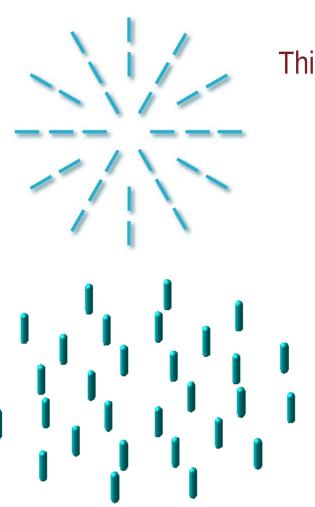
Topological excitations in nematic liquid crystal



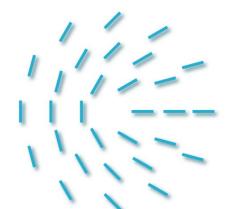
Topological excitation related to rotational symmetry breaking

States with topological excitations cannot be continuously transformed to states without topological excitations





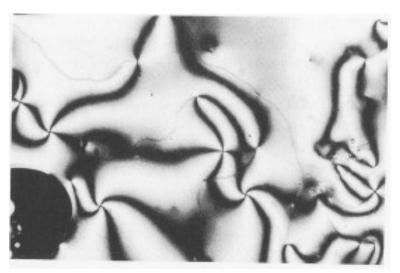
This is topological excitation in 2D system but not topological excitation in 3D system



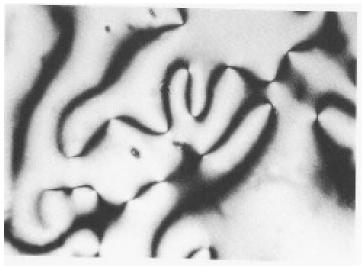
This is always topological excitation

Characteristics of topological excitations strongly depend on the internal degrees of freedom (topology) of the system

Observation of topological excitations in nematical content of topological excitations in nematical excitations.

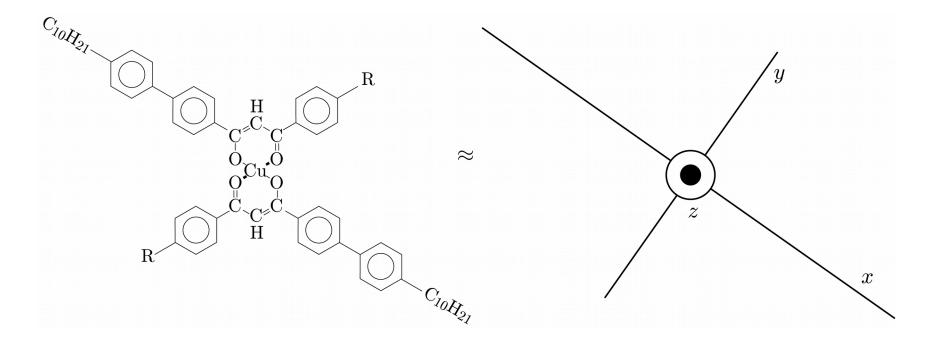


near surface



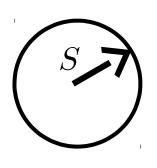
far from surface

Biaxial nematic liquid crystal



Topological excitations and homotopy

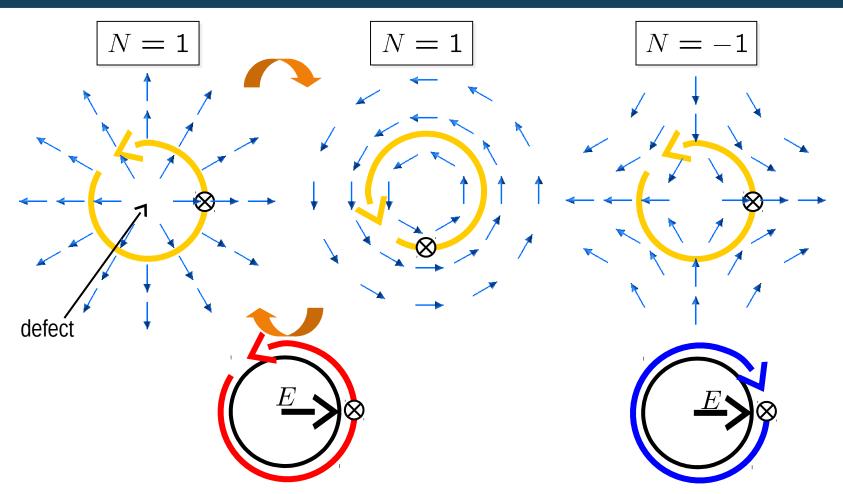
XY-spin system



In XY-spin system, local spin (order parameter) can be expressed by a point in a circle

→Order-parameter manifold

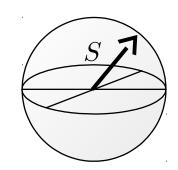
Topological defects and homotopy

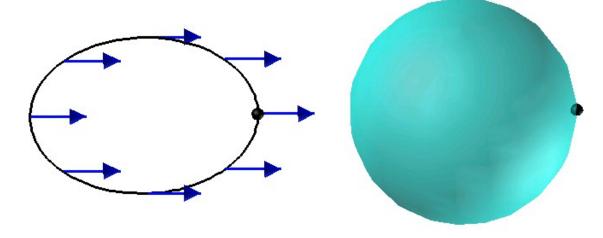


Topological excitations can be characterized by how many times the state rotates the circle along the closed path

Heisenberg-spin

Order parameter can be expressed by a point in a sphere



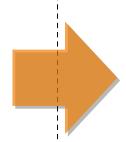


Topological excitations can never be stabilized

Excitations in symmetry broken systems via phase transitions

Liquid → Solid transition (spontaneous symmetry breaking)

Liquid

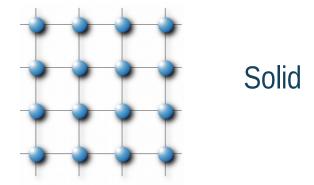


Solid (crystal)

- •Free energy is invariant under translational and rotational transformations
- •System is also invariant under transformations

- •Free energy is invariant under translational and rotational transformations
- •System is not invariant under transformations (symmetry breaking)

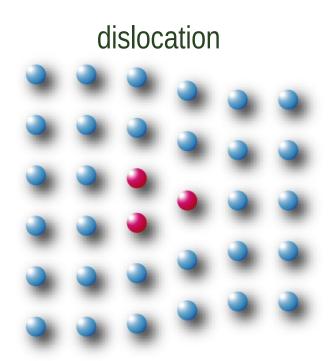
Atoms are little influenced by other atoms.



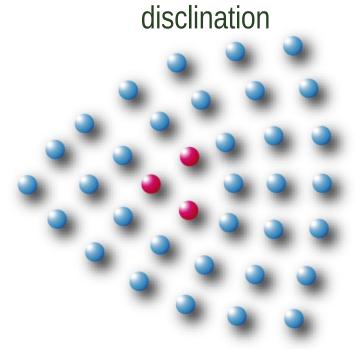
Positions and orientations of atoms are strongly affected by other atoms and fixed (spontaneous symmetry breaking).

Topological excitations appear in symmetry broken systems

In crystal



Topological excitation related to translational symmetry breaking



Topological excitation related to rotational symmetry breaking

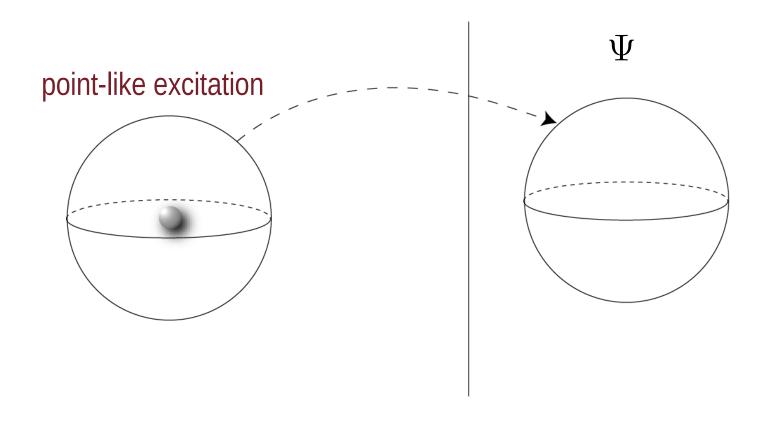
U(1) gauge symmetry breaking in BEC

Mean-field Hamiltonian at the zero temperature

$$H = \int d\boldsymbol{x} \left[\frac{\hbar^2}{2M} \nabla \Psi^*(\boldsymbol{x}) \nabla \Psi(\boldsymbol{x}) + \frac{c_0}{2} |\Psi(\boldsymbol{x})|^4 \right]$$

$$egin{aligned} \Psi(m{x}) &= |\Psi(m{x})| \exp[iarphi(m{x})] \
ho(m{x}) &= |\Psi(m{x})|^2 : ext{Fluid density} \ m{v}(m{x}) &= rac{\hbar}{m}
abla arphi(m{x}) : ext{Fluid velocity} \end{aligned}$$

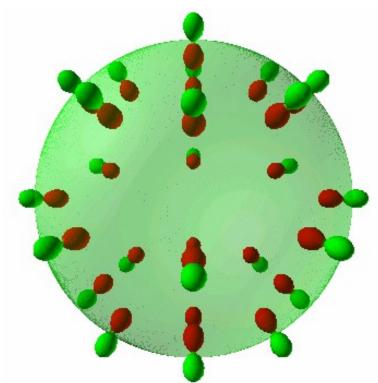
Point-like excitation



Point-like excitation

Polar phase

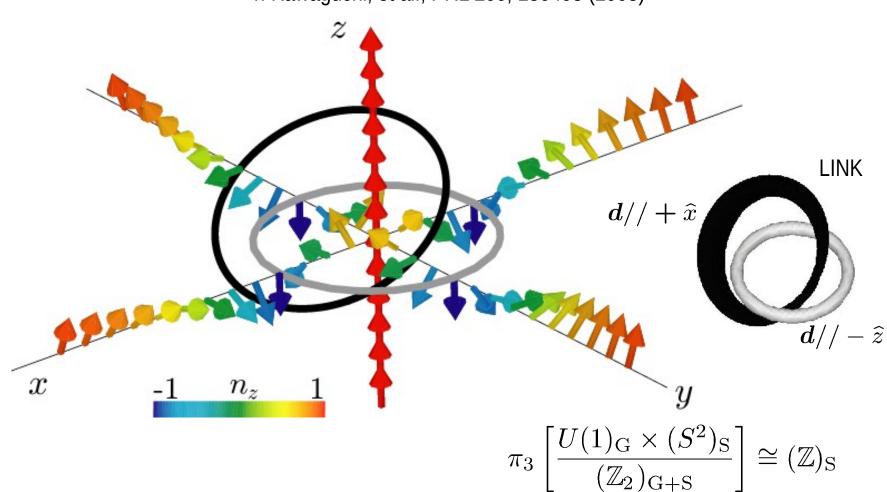
$$\frac{G}{H} \simeq \frac{U(1)_{\varphi} \times S_F^2}{(\mathbb{Z}_2)_{\varphi+F}}$$



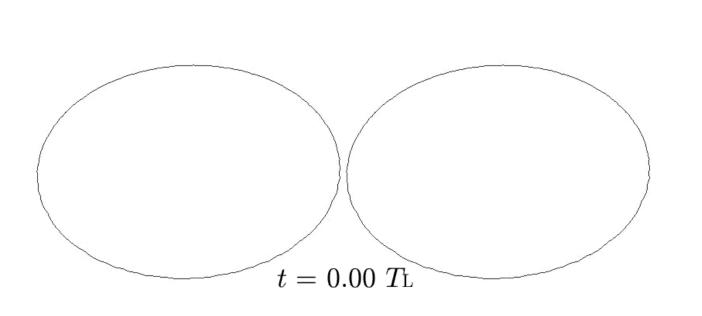
Point-like excitation cannot exist in Ferromagnetic phase

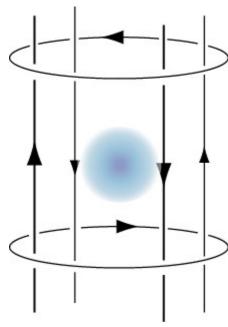
$$\frac{G}{H} \simeq SO(3)_{\varphi+F}$$

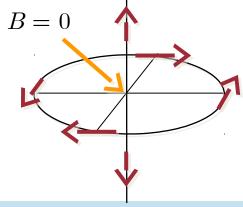
π_3 excitation and Hopf mapping



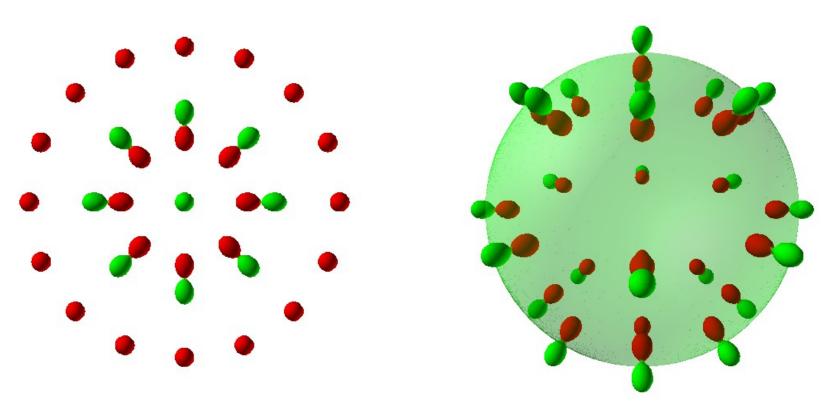
π_3 excitation and Hopf mapping







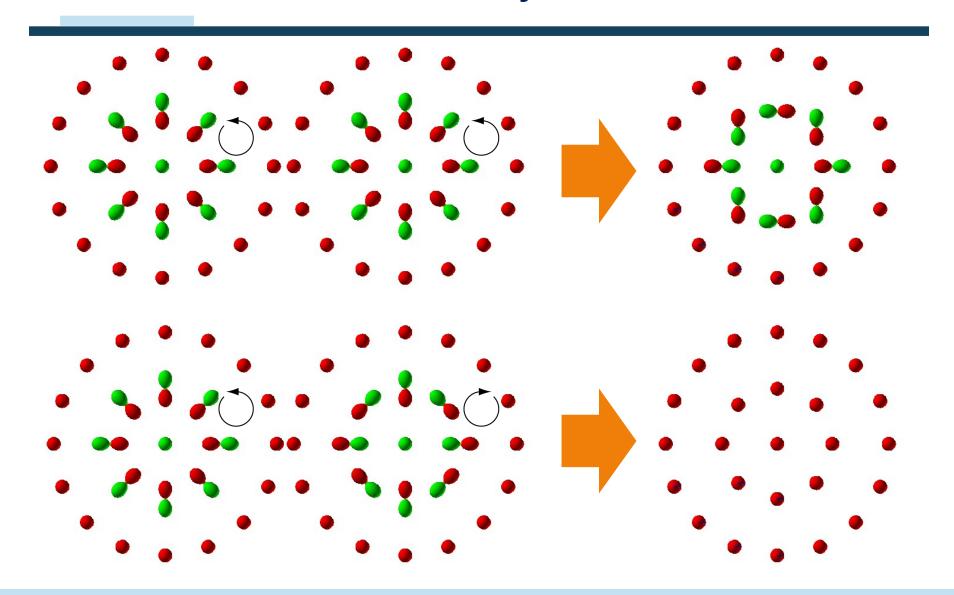
Point-like excitation and 2D skyrmion

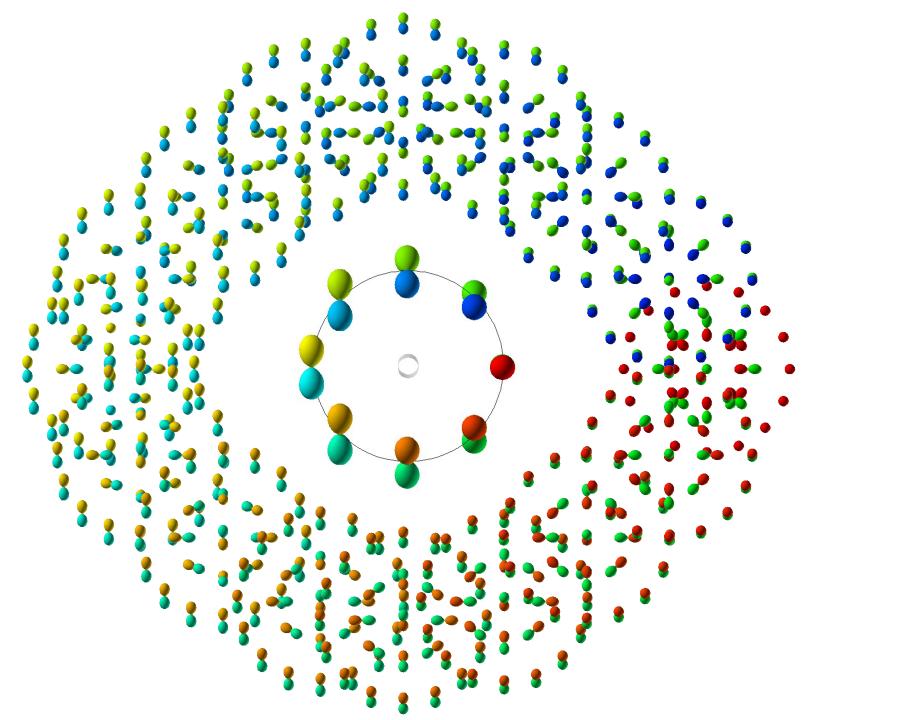


L. S. Leslie, et al. arXiv:0910.4918

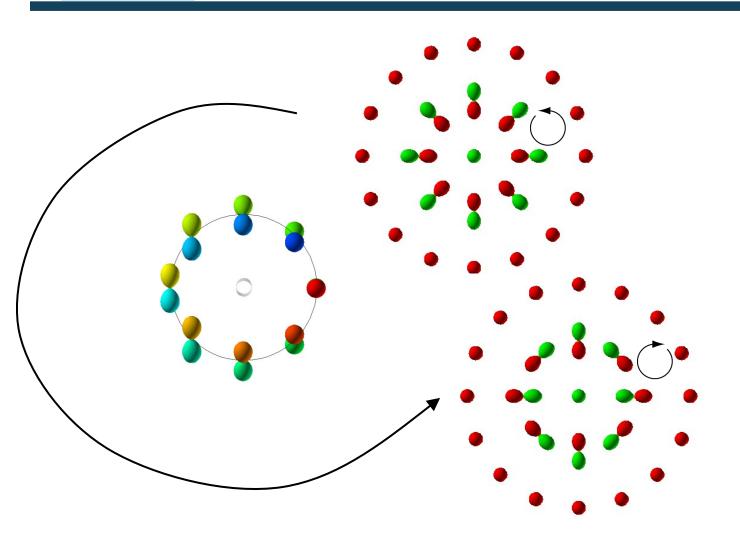
$$\pi_2 \left[\frac{U(1)_{\mathcal{G}} \times (S^2)_{\mathcal{S}}}{(\mathbb{Z}_2)_{\mathcal{G}+\mathcal{S}}} \right] \cong \pi_2[(S^2)_{\mathcal{S}}] \cong (\mathbb{Z})_{\mathcal{S}}$$

Two 2D skyrmion



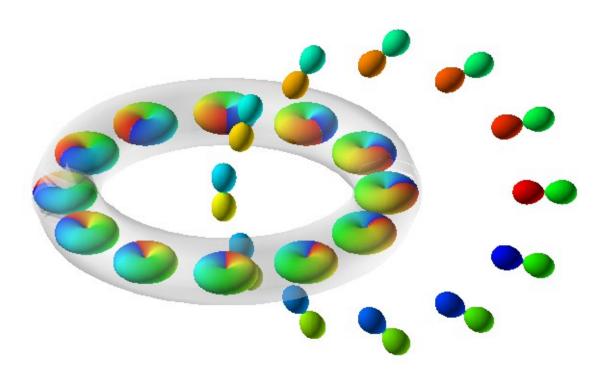


Inversion of topological invariant



Vorton excitation

vorton

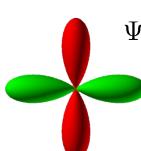


Spin-2 case

$$H = \int d\mathbf{x} \left[-\Psi_m^* \frac{\hbar^2}{2M} \nabla^2 \Psi_m + \frac{c_0}{2} \rho^2 + \frac{c_1}{2} \mathbf{F}^2 + \frac{c_2}{2} |A_{20}|^2 \right]$$

Uniaxial Nematic:

$$\Psi_{\rm U} = (0, 0, 1, 0, 0)^T$$
$$U(1)_{\varphi} \times \frac{S_F^2}{(\mathbb{Z}_2)_F}$$



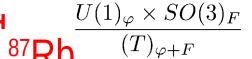
$$\Psi_{\rm B} = (1, 0, 0, 0, 1)^T / \sqrt{2}$$

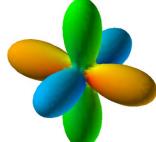
$$\frac{U(1)_{\varphi} \times SO(3)_F}{(D_4)_{\varphi+F}}$$

$$c_2 = 4c_1$$

Cyclic:
$$\Psi_{\rm C} = (1,0,0,\sqrt{2},1)^T/\sqrt{3}$$

$$U(1)_{\wp} \times SO(3)_F$$

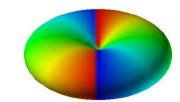




Ferromagnetic:

$$\Psi_{\rm F} = (1, 0, 0, 0, 0)^T$$

$$\frac{SO(3)_{\varphi+F}}{(\mathbb{Z}_2)_{\varphi+F}}$$

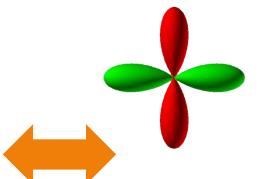


Nematic phase of spin-2

$$H = \int d\mathbf{x} \left[-\Psi_m^* \frac{\hbar^2}{2M} \nabla^2 \Psi_m + \frac{c_0}{2} \rho^2 + \frac{c_1}{2} \mathbf{F}^2 + \frac{c_2}{2} |A_{20}|^2 \right]$$

Uniaxial Nematic:

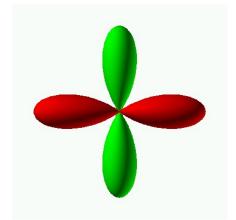
$$\Psi_{\rm U} = (0, 0, 1, 0, 0)^T$$
$$U(1)_{\phi} \times \frac{S_F^2}{(\mathbb{Z}_2)_F}$$



Biaxial Nematic:

$$\Psi_{\rm B} = (1, 0, 0, 0, 1)^T / \sqrt{2}$$
$$\frac{U(1)_{\phi} \times SO(3)_F}{(D_4)_{\phi+F}}$$

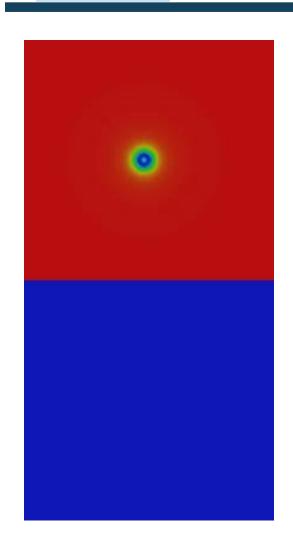
Two states are degenerate via another continuous degree of freedom



New order-parameter manifold

$$\frac{U(1)_{\phi} \times S_F^4}{(\mathbb{Z}_2)_{\phi+F}}$$

Quasi-Nambu-Goldstone current



S. Uchino, et al., PRL in press

Decay of vortex in biaxial nematic phase

Emission of quasi-Nambu-Goldstone current

Cyclic State vs. Singlet-trio Condensed State

For $c_1 > 0$, $c_2 > 0$

M. Koashi, and M. Ueda. PRL **84**, 1066 (2000)

Singlet-trio condensed state (only U(1) is broken)

$$|\Psi\rangle = \left[e^{i\varphi} \left(\frac{\sqrt{2}\hat{a}_0(\hat{a}_0^{\dagger 2} - 3a_1^{\dagger}a_{-1}^{\dagger} - 6a_2^{\dagger}a_{-2}^{\dagger}) + 3\sqrt{3}(a_1^{\dagger 2}a_{-2}^{\dagger} + a_{-1}^{\dagger 2}a_2^{\dagger})}{\sqrt{35}}\right)\right]^{N/3}|0\rangle$$

Transition occurs under $\sim 1\mu G$

Cyclic state (U(1) \times SO(3) is broken)

$$|\Psi\rangle = \left[\sum_{m} \Psi_{m} a_{m}^{\dagger}\right]^{N} |0\rangle$$

$$\Psi = e^{i\varphi}e^{-i\hat{m{F}}\cdotm{lpha}} \left(egin{array}{c} i/2 \ 0 \ 1/\sqrt{2} \ 0 \ i/2 \end{array}
ight)$$

Nematic State vs. Singlet-pair Condensed State

For
$$c_1 > 0$$
, $c_2 < 0$

M. Koashi, and M. Ueda. PRL **84**, 1066 (2000)

Singlet-pair condensed state (only U(1) is broken)

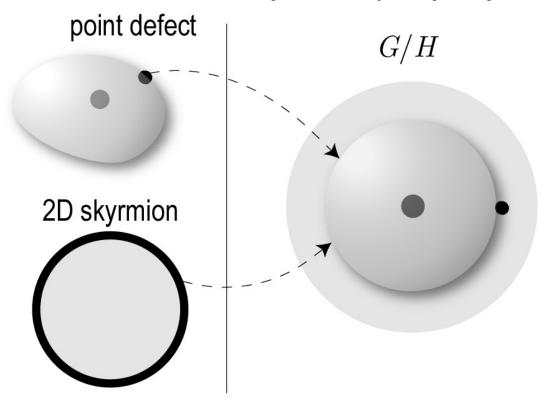
$$|\Psi\rangle = \left[e^{i\varphi} \left(\frac{\hat{a}_0^{\dagger 2} - 2a_1^{\dagger} a_{-1}^{\dagger} + a_2^{\dagger} a_{-2}^{\dagger}}{\sqrt{5}}\right)\right]^{N/2} |0\rangle$$

Transition occurs under ~1µG

Nematic state
$$(\mathrm{U}(1) \times \mathrm{SO}(3)$$
 is broken) $\begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$ or $\begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} / \sqrt{2}$ $|\Psi\rangle = \left[\sum_{m} \Psi_{m} a_{m}^{\dagger}\right]^{N} |0\rangle$ $\Psi = e^{i\varphi} e^{-i\hat{F}\cdot\alpha} \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}$ or $\begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}$

Topological defects (2nd homotopy group)

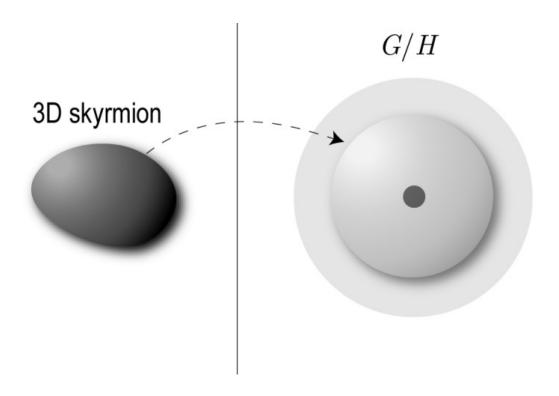
Point defect or 2D skyrmion (baby skyrmion)



Along the closed sphere, by how many times the sphere covers the singular point of Ψ (2nd homotopy group π_2)

Topological defects (3nd homotopy group)

3D skyrmion



Along the closed 3D sphere, by how many times the sphere covers the singular point of Ψ (3nd homotopy group π_3)