Non-Abelian Vortices and Their Non-equilibrium Dynamics in Bose-Einstein Condensates with Spins

Michikazu Kobayashi<sup>a</sup>

University of Tokyo

November 18th, 2011 at Keio University "2<sup>nd</sup> Workshop on Quarks and Hadrons under Extreme Conditions - Lattice QCD, Holography, Topology, and Physics at RHIC / LHC -"

### Special Thanks to

 Condensed matter system & Bose-Einstein condensate Shingo Kobayashi (University of Tokyo) Yuki Kawaguchi (University of Tokyo) Masahito Ueda (University of Tokyo) Cosmology Shun Uchino (Kyoto University) Muneto Nitta (Keio University) •Statistical physics Shin-ichi Sasa (University of Tokyo) Leticia F. Cugliandolo (Université Pierre et Marie Curie)

# Contents

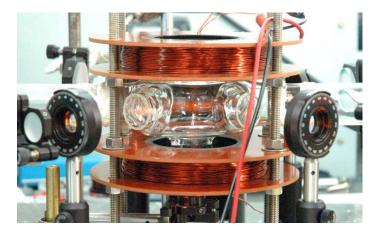
- 1. Vortices in Bose-Einstein Condensates
- 2. Non-Abelian Vortex in BEC with Spin
- 3. Collision Dynamics of Non-Abelian Vortices
- 4. Non-equilibrium dynamics of Non-Abelian Defects
- 5. Summary

# Contents

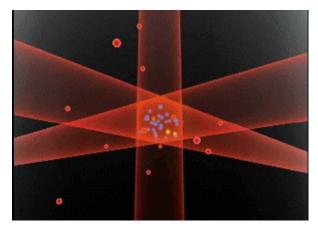
- 1. Vortices in Bose-Einstein Condensates
- 2. Non-Abelian Vortex in BEC with Spin
- 3. Collision Dynamics of Non-Abelian Vortices
- 4. Non-equilibrium dynamics of Non-Abelian Defects
- 5. Summary

#### Ultracold Atomic Bose-Einstein Condensate

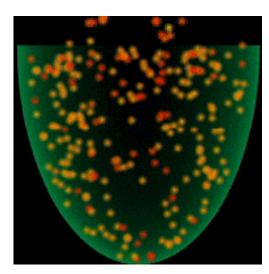
# Dilute alkali atomic BEC has been succeeded in 1997



Trap of atoms <sup>87</sup>Rb, <sup>23</sup>Na, <sup>7</sup>Li, <sup>1</sup>H, <sup>85</sup>Rb, <sup>41</sup>K, <sup>4</sup>He, <sup>133</sup>Cs, <sup>174</sup>Yb, <sup>52</sup>Cr, <sup>40</sup>Ca, <sup>84</sup>Sr, <sup>164</sup>Dy



#### Laser cooling

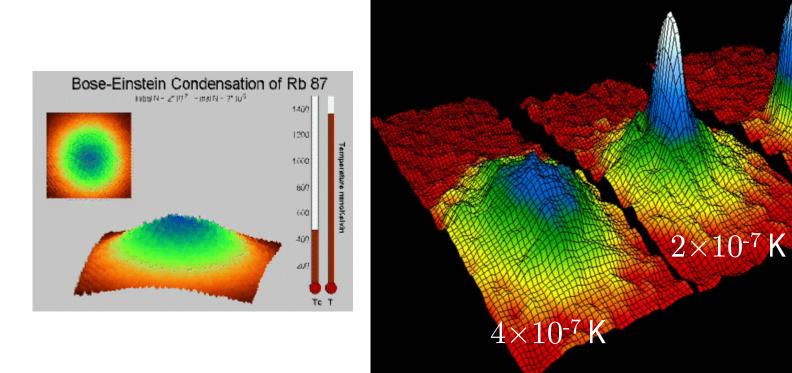


Evaporative cooling

#### **Atomic Bose-Einstein Condensate**

#### BEC of <sup>87</sup>Rb

 $1{ imes}10^{-7}\,{
m K}$ 





#### **Bose-Einstein Condensation**

Essence of BEC : Broken U(1) - gauge symmetry  $ho(\boldsymbol{x},\boldsymbol{y}) = \langle \hat{\psi}(\boldsymbol{x}) \hat{\psi}^{\dagger}(\boldsymbol{y}) \rangle \stackrel{|\boldsymbol{x}-\boldsymbol{y}| \to \infty}{\longrightarrow} \psi(\boldsymbol{x}) \psi(\boldsymbol{y})^{*}$ 

 $\psi(\boldsymbol{x}) = |\psi(\boldsymbol{x})| \exp[i\varphi(\boldsymbol{x})] : \varphi(\boldsymbol{x})$  is fixed  $\rightarrow$  broken U(1) - gauge symmetry

condensate density  $: n_c(\boldsymbol{x}) = |\psi(\boldsymbol{x})|^2$ condensate current :  $\boldsymbol{j}_{c}(\boldsymbol{x}) = (\hbar/M) \operatorname{Im}[\psi^{*}(\boldsymbol{x})\nabla\psi(\boldsymbol{x})]$ superfluid velocity :  $v_c(x) \equiv j_c(x)/n_c(x) = (\hbar/M)\nabla\varphi(x)$ 

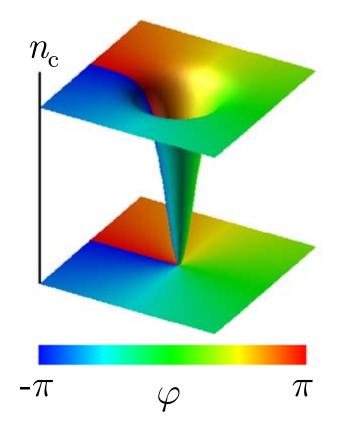
# Vortex in BEC

condensate density  $: n_c = |\psi|^2$ superfluid velocity  $: \boldsymbol{v}_c = (\hbar/M) \nabla \varphi$ 

Phase  $\varphi$  of the wave function shifts by  $2\pi m$  (m: integer) around the vortex core where the wave function vanishes :  $\psi = 0$  as a topological defect.

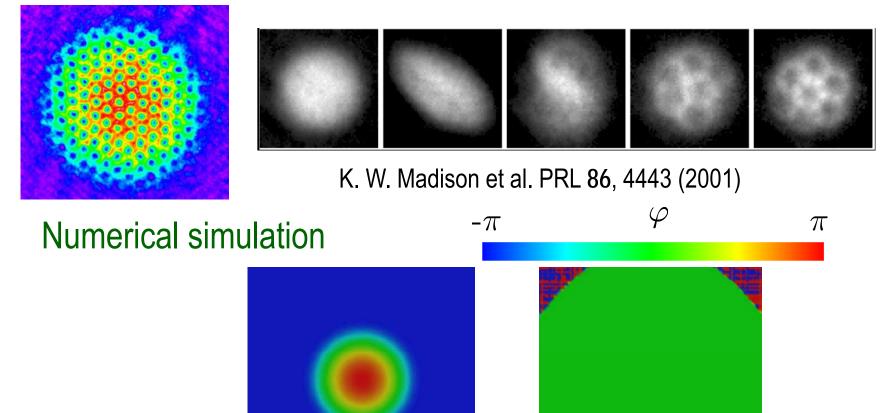
Each vortex can be characterized by m (additive group of integers)

#### Quantized vortex for m = +1



#### **Experimental Observation of Vortices**

#### Vortex lattice and its formation in <sup>87</sup>Rb BEC



# Contents

#### 1. Vortices in Bose-Einstein Condensates

- 2. Non-Abelian Vortex in BEC with Spin
- 3. Collision Dynamics of Non-Abelian Vortices
- 4. Non-equilibrium dynamics of Non-Abelian Defects
- 5. Summary

### Spinor Bose-Einstein Condensate

There are two ways to trap BECs : magnetic trap and laser trap

magnetic trap : spin degrees of freedom is frozen  $\rightarrow$  scalar BEC laser trap : spin degrees of freedom is alive  $\rightarrow$  spinor BEC

Hyperfine interaction between electron spin and orbital and nuclear spin cannot be negligible for cold atoms

| Hyperfine spin : $F = I + S + L$ | <sup>87</sup> Rb, <sup>23</sup> Na, | F=1, 2 |
|----------------------------------|-------------------------------------|--------|
| I: nuclear spin                  | <sup>7</sup> Li, <sup>41</sup> K    |        |
| S: electron spin                 | <sup>85</sup> Rb                    | F=2, 3 |
| L : electron orbital             | <sup>133</sup> Cs                   | F=3, 4 |
|                                  | <sup>52</sup> Cr                    | F=3    |

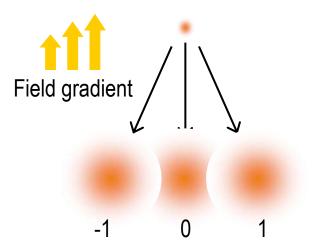
#### Spinor Bose-Einstein Condensate

For <sup>87</sup>Rb  $(I = 3/2, S = 1/2, L = 0) \rightarrow F = 1$  or 2

$$F = 2 \begin{cases} m = 2 \\ m = 1 \\ m = 0 \\ m = -1 \\ m = -2 \end{cases} \qquad F = 1 \begin{cases} m = 1 \\ m = 0 \\ m = -1 \\ m = -1 \end{cases}$$

Multi-component BEC characterized by the quantum number m

Spin 1 : 3-component BEC  $\psi = (\psi_1, \psi_0, \psi_{-1})$ Spin 2 : 5-component BEC  $\psi = (\psi_2, \psi_1, \psi_0, \psi_{-1}, \psi_{-2})$ 



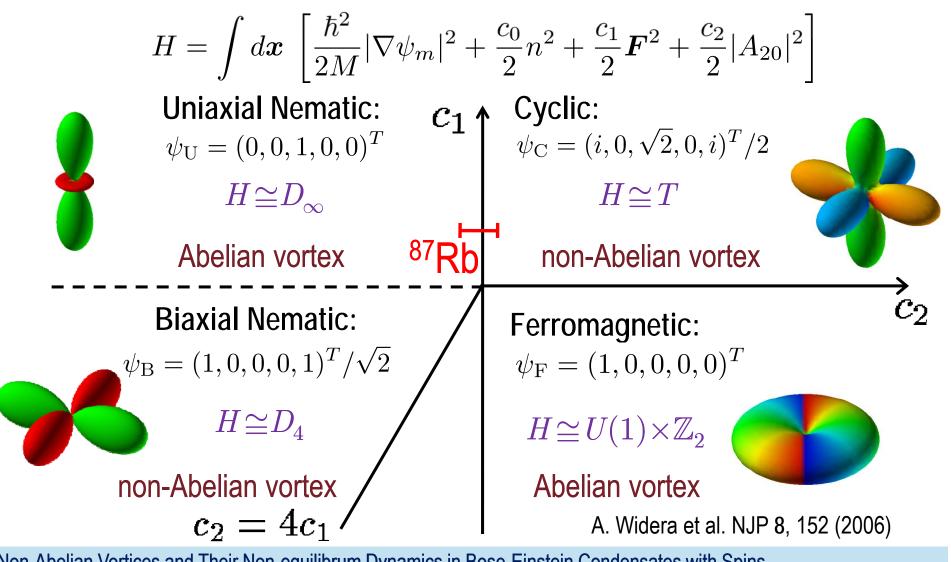
### Effective Hamiltonian for BEC

$$H = \begin{cases} \int d\boldsymbol{x} \left[ \frac{\hbar^2}{2M} |\nabla \psi_m|^2 + \frac{c_0}{2} n^2 + \frac{c_1}{2} \boldsymbol{F}^2 \right] & \text{spin-1 BEC} \\ \int d\boldsymbol{x} \left[ \frac{\hbar^2}{2M} |\nabla \psi_m|^2 + \frac{c_0}{2} n^2 + \frac{c_1}{2} \boldsymbol{F}^2 + \frac{c_2}{2} |A_{20}|^2 \right] & \text{spin-2 BEC} \\ & \text{number density} \quad : n(\boldsymbol{x}) = \psi_m^*(\boldsymbol{x}) \psi_m(\boldsymbol{x}) \\ & \text{spin density} \quad : \boldsymbol{F}(\boldsymbol{x}) = \psi_m^*(\boldsymbol{x}) \hat{\boldsymbol{F}}_{mn} \psi_n(\boldsymbol{x}) \\ & \text{singlet-pair amplitude} \quad : A_{20} = (-1)^m \psi_m \psi_{-m} \end{cases}$$

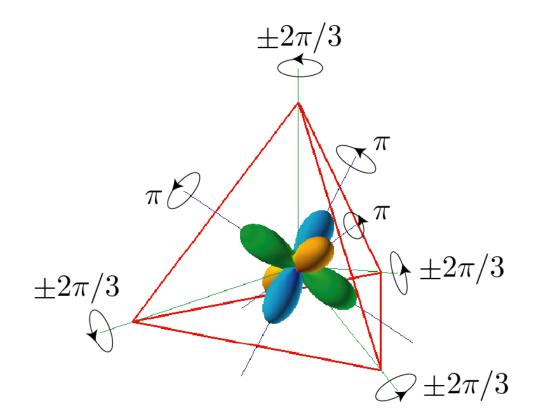
As well as U(1) gauge symmetry, SO(3) spin rotational symmetry is also broken :  $G \cong U(1) \times SO(3)$ 

Remaining symmetry H can be (non-Abelian) subgroup of SO(3) $\Rightarrow \pi_1[G/H]$  can be non-Abelian  $\rightarrow$  non-Abelian vortex appears

# Spin-2 BEC

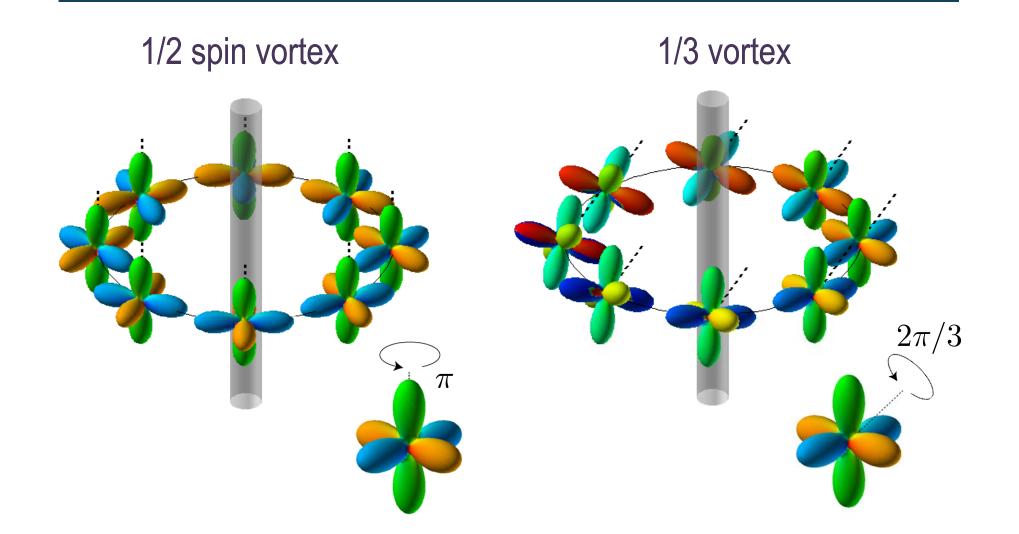


#### Symmetry of cyclic state



Spin rotations keeping cyclic state invariant form a non Abelian tetrahedral symmetry

#### Vortices in cyclic state



#### Interaction between two parallel vortices

#### Energetically obtained interaction between two parallel vortices

|     | 1/3 (commutative)                        | 1/3 (non-commutative)             | 1/2 (commutative)                      | 1/2 (non-commutative)             |
|-----|------------------------------------------|-----------------------------------|----------------------------------------|-----------------------------------|
| 1/3 | $-(s_1s_2/3)\log r_{12}$                 | $-(2/3)(\tanh(\alpha_1 r_1 2))^2$ | $-\sqrt{1/3}(\tanh(\alpha_2 r_1 2))^2$ |                                   |
| 1/2 | 2 $-\sqrt{1/3}(\tanh(\alpha_2 r_1 2))^2$ |                                   | $-(s_1s_2/2)\log r_{12}$               | $-(1/2)(\tanh(\alpha_3 r_1 2))^2$ |

#### There is also "topological" interaction between vortices

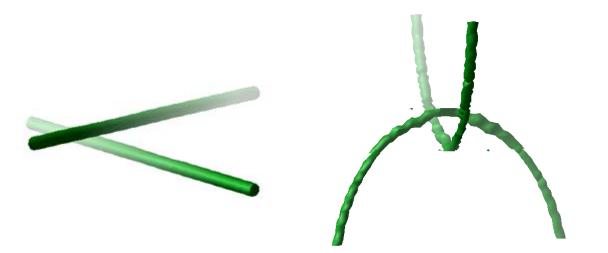
# Contents

- 1. Vortices in Bose-Einstein Condensates
- 2. Non-Abelian Vortex in BEC with Spin
- 3. Collision Dynamics of Non-Abelian Vortices
- 4. Non-equilibrium dynamics of Non-Abelian Defects
- 5. Summary

#### **Collision Dynamics of Non-Abelian Vortices**

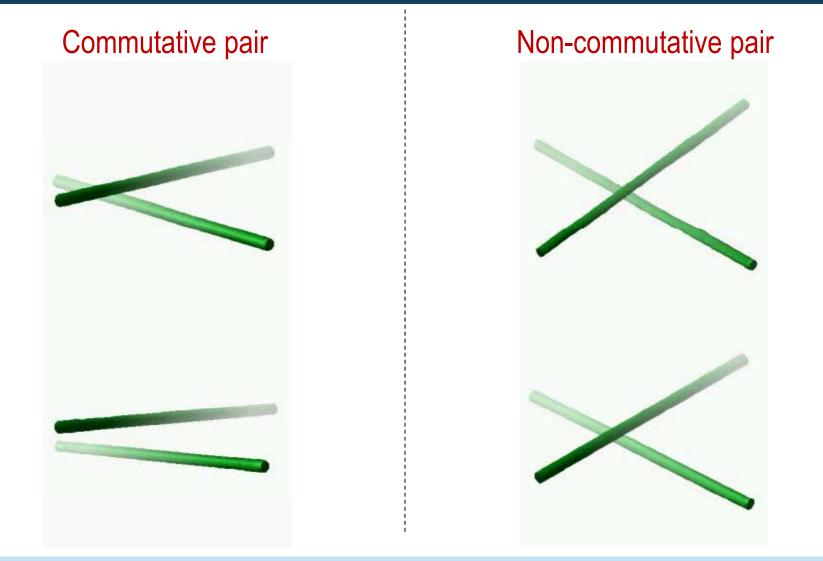
#### "Non-Abelian property" becomes outstanding for collision dynamics of vortices →Simulation of Gross-Pitaevskii equation (GPE)

Initial state : two straight vortices & two linked vortices

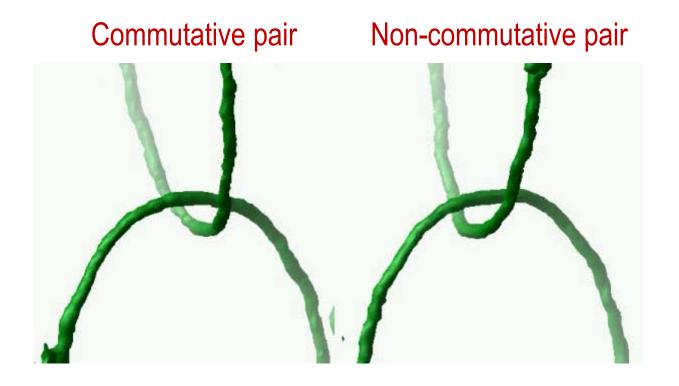


MK, Y. Kawaguchi, M, Nitta, and M. Ueda, PRL 103, 115301(2009).

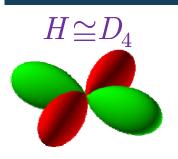
#### Collision dynamics of vortices

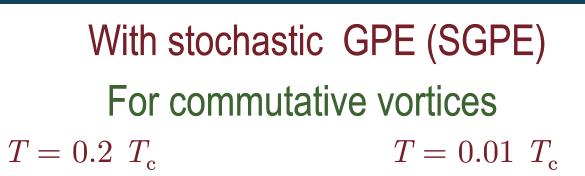


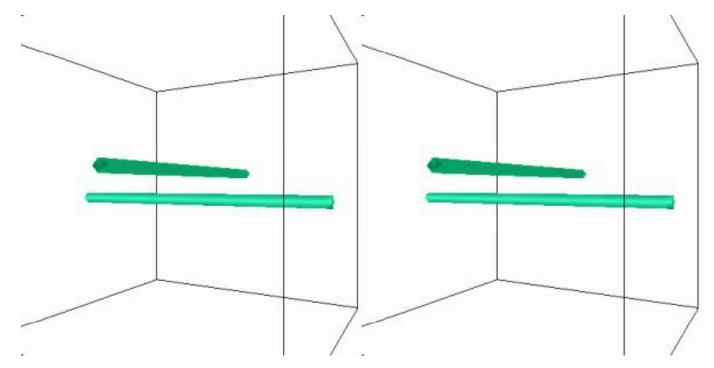
#### Collision dynamics of vortices



#### Biaxial nematic state at finite temperature

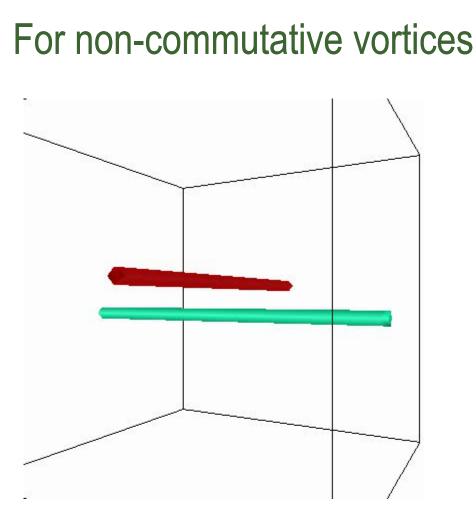






#### Biaxial nematic state at finite temperature

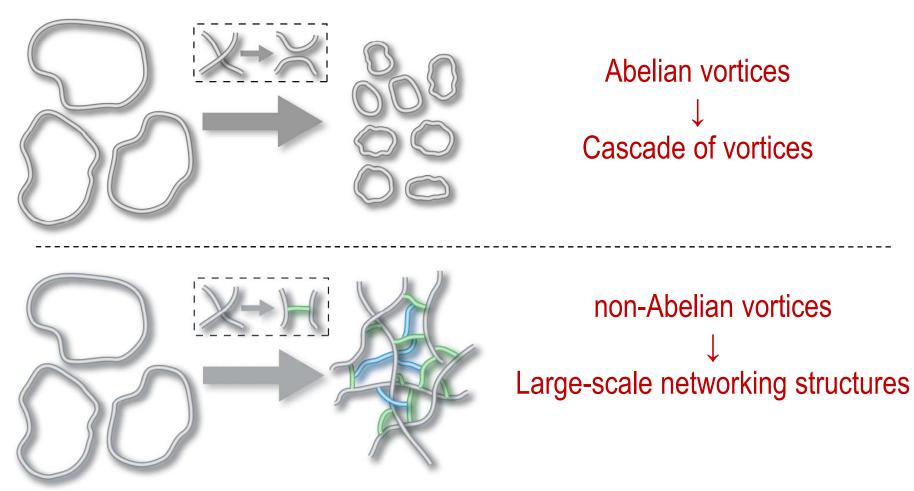
 $H \cong D_4$ 



# Contents

- 1. Vortices in Bose-Einstein Condensates
- 2. Non-Abelian Vortex in BEC with Spin
- 3. Collision Dynamics of Non-Abelian Vortices
- 4. Non-equilibrium dynamics of Non-Abelian Defects
- 5. Summary

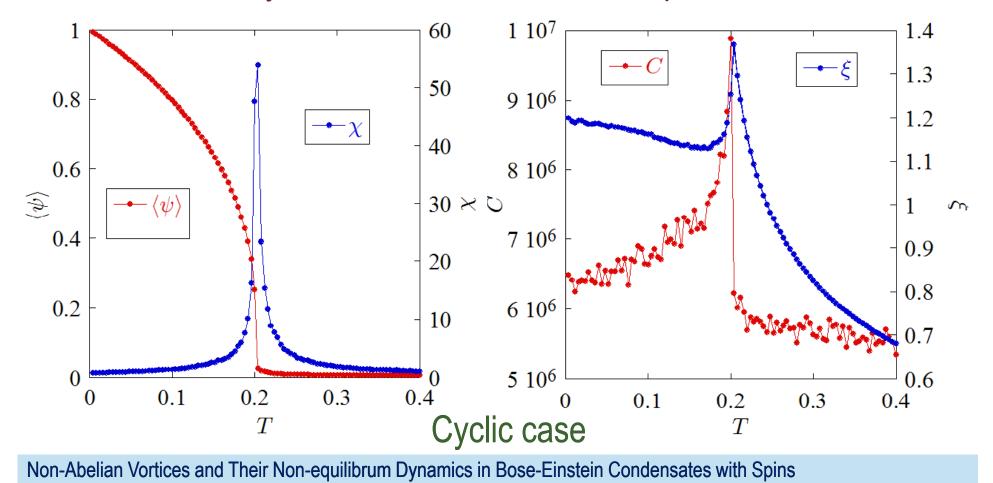
#### Non-equilibrium Dynamics of non-Abelian Vortices



Different non-equilibrium behavior is expected

#### Equilibrium property

Being independent of whether vortices are Abelian or non-Abelian, system shows the 2<sup>nd</sup> ordered phase transition

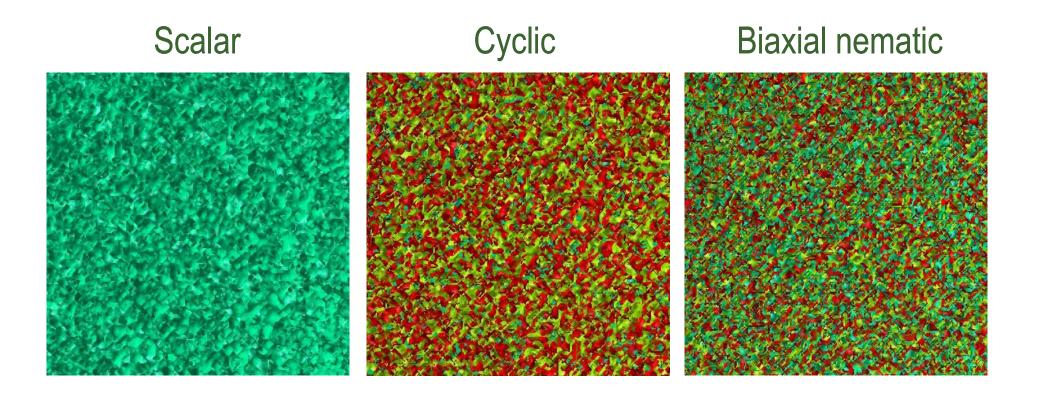


### **Critical exponent**

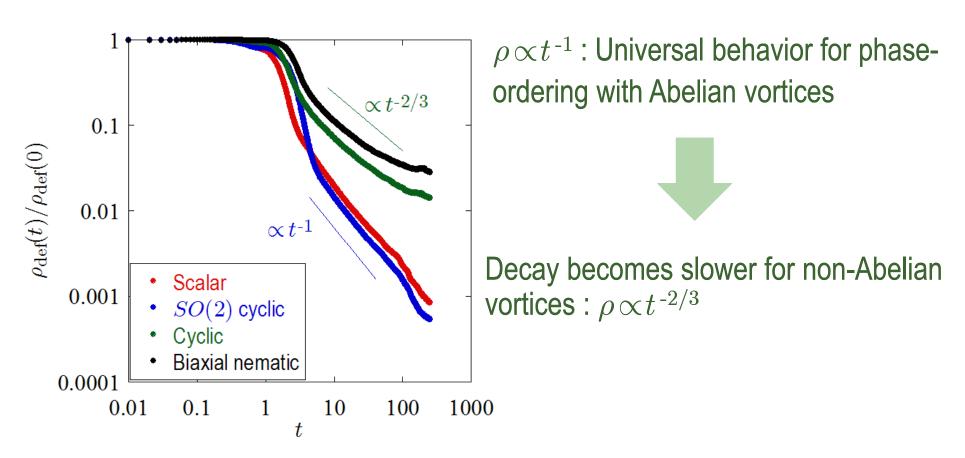
|                         | α       | $\beta(T < T_c)$ | $\gamma$ | ν    |
|-------------------------|---------|------------------|----------|------|
| scalar BEC              | -0.0080 | 0.35             | 1.3      | 0.67 |
| cyclic                  | -0.04   | 0.37             | 1.3      | 0.68 |
| biaxial nematic         | 0.5     | 0.26             | 0.99     | 0.50 |
| $S^{9} (c_1 = c_2 = 0)$ | -0.37   | 0.43             | 1.3      | 0.71 |
| SO(2) cyclic            | -0.18   | 0.49             | 1.51     | 0.79 |
| mean field              | 0       | 1/2              | 1        | 1/2  |

Difference of the critical exponent shows the difference of topology of the order parameter

#### Rapid temperature quench from $T=2T_{\rm c}$ to $T\rightarrow 0$



#### Density of vortex line length



Slower dynamics has also been observed for phase ordering of conserved Ising model :  $\langle S \rangle = 0$  (total magnetization is fixed to 0)  $\Rightarrow$  Decay of domain wall becomes slower in the phase ordering than that in non-conserved Ising model.

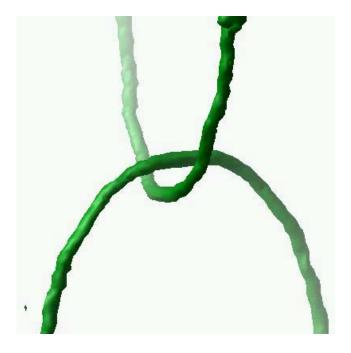


#### Conserved value in this case : linking number

#### Conserved value in this case : linking number

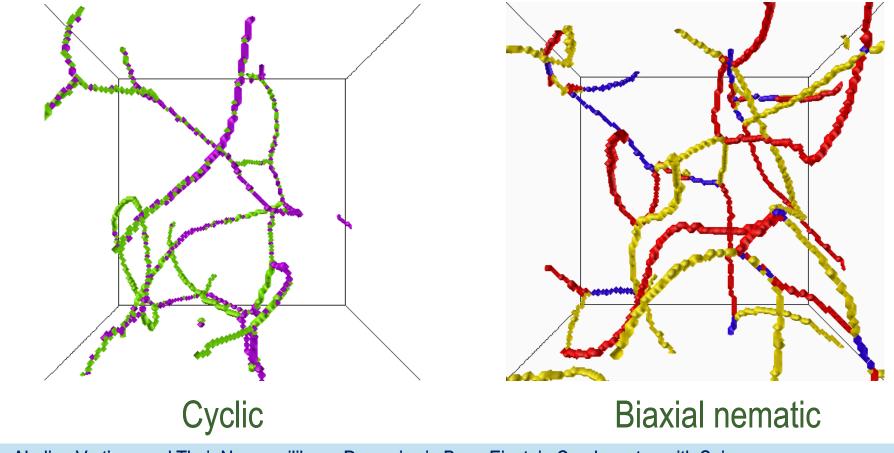
Non-commutative vortices cannot pass through each other, behaving like substantial string

⇒Linking number of vortices are conserved



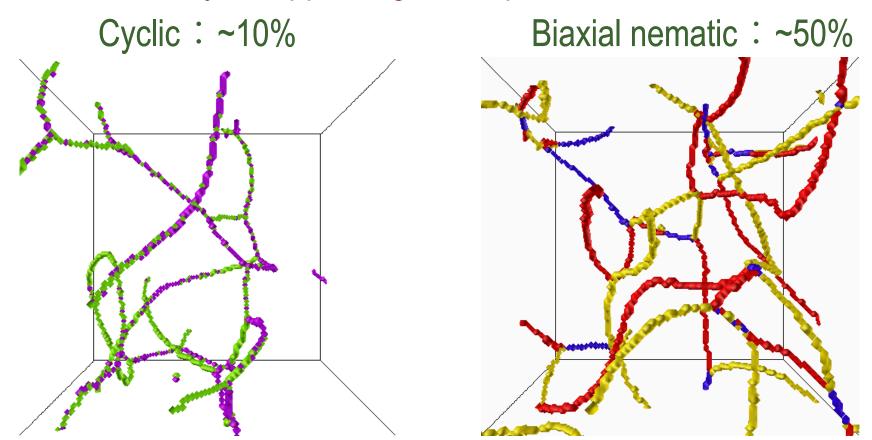
#### **Final State**

Sometimes, dynamics stops with finite number of vortices, never relaxing to equilibrium state



#### **Final State**

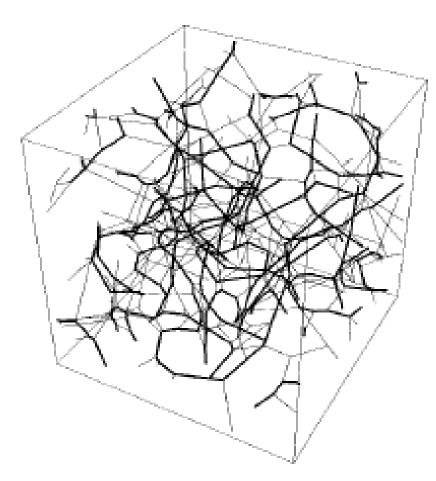
Probability for appearing non-equilibrium final state



Probability depends on the topology (the number of conjugacy class?)

# Non-Abelian Cosmic Strings

Similar behavior has been reported in the context of cosmic string

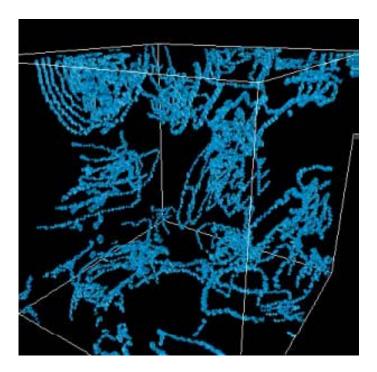


Networking structure of non-Abelian cosmic strings are predicted

P. McGraw, PRD 57, 3317 (1998)

#### Quantum turbulence

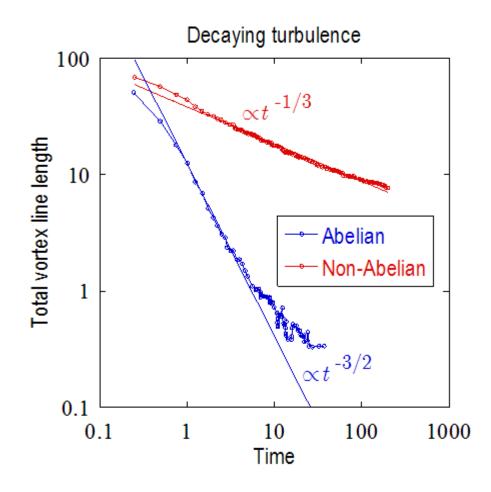
# Starting from large-scale vortex loops $\Rightarrow$ Cascade of large to smaller vortices : turbulence

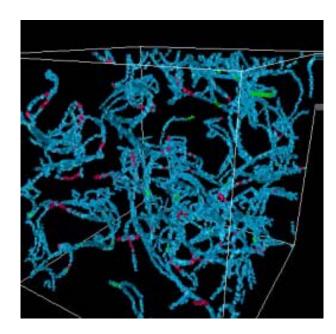


Turbulence of scalar BEC : In large scales, the Kolmogorov spectrum (spectrum in classical turbulence) has been confirmed.

MK and M. Tsubota, PRL 94, 065302 (2005)

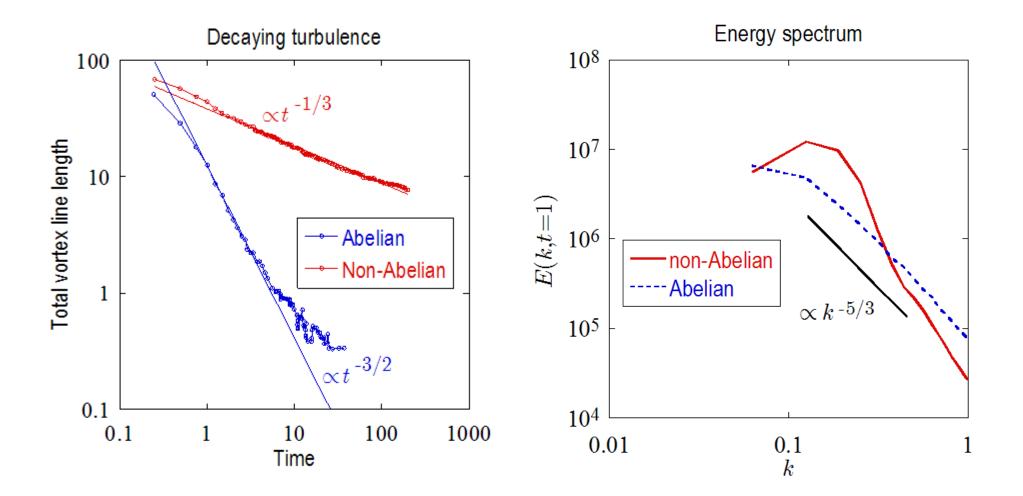
#### Quantum turbulence





Turbulent behavior is strongly affected by topology

#### Quantum turbulence



# Summary

- 1. Non-Abelian defects can be realized vortices in BEC with spin degrees of freedom
- Collision of two defects are completely different between Abelian and non-Abelian vortices (creation of new defect bridging colliding defects)
- 3. Non-Abelian vortices also change various kind of dynamical behavior (especially makes dynamics slower due to tangling of vortices)