Non-Abelian Vortices and Their Non-equilibrium Dynamics in Bose-Einstein Condensates with Spins

Michikazu Kobayashi^a

University of Tokyo

November 18th, 2011 at Keio University "2nd Workshop on Quarks and Hadrons under Extreme Conditions -Lattice QCD, Holography, Topology, and Physics at RHIC / LHC -"

Special Thanks to

•Condensed matter system & Bose-Einstein condensate Shingo Kobayashi (University of Tokyo) Yuki Kawaguchi (University of Tokyo) Masahito Ueda (University of Tokyo) •Cosmology Shun Uchino (Kyoto University) Muneto Nitta (Keio University) •Statistical physics Shin-ichi Sasa (University of Tokyo) Leticia F. Cugliandolo (Université Pierre et Marie Curie)

Contents

- 1. Vortices in Bose-Einstein Condensates
- 2. Non-Abelian Vortex in BEC with Spin
- 3. Collision Dynamics of Non-Abelian Vortices
- 4. Non-equilibrium dynamics of Non-Abelian Defects
- 5. Summary

Contents

- 1. Vortices in Bose-Einstein Condensates
- 2. Non-Abelian Vortex in BEC with Spin
- 3. Collision Dynamics of Non-Abelian Vortices
- 4. Non-equilibrium dynamics of Non-Abelian Defects
- 5. Summary

Ultracold Atomic Bose-Einstein Condensate

Dilute alkali atomic BEC has been succeeded in 1997

Trap of atoms 87Rb, 23Na, 7Li, 1H, 85Rb, 41K, 4He, 133Cs, 174Yb, 52Cr, 40Ca, 84Sr, 164Dy

Laser cooling

Evaporative cooling

Atomic Bose-Einstein Condensate

BEC of ⁸⁷Rb

Bose-Einstein Condensation

Essence of BEC : Broken *U*(1) - gauge symmetry $\rho(\boldsymbol{x},\boldsymbol{y}) = \langle \hat{\psi}(\boldsymbol{x})\hat{\psi}^{\dagger}(\boldsymbol{y})\rangle \stackrel{|\boldsymbol{x}-\boldsymbol{y}| \to \infty}{\longrightarrow} \psi(\boldsymbol{x})\psi(\boldsymbol{y})^*$ $\psi(\bm{x}) = |\psi(\bm{x})| \exp[i\varphi(\bm{x})] : \varphi(\bm{x})$ is fixed

 \longrightarrow \rightarrow broken $U(1)$ - gauge symmetry

condensate density $\; : n_c(\boldsymbol{x}) = |\psi(\boldsymbol{x})|^2$ condensate current : $\boldsymbol{j}_{c}(\boldsymbol{x}) = (\hbar/M)\mathrm{Im}[\psi^{*}(\boldsymbol{x})\nabla\psi(\boldsymbol{x})]$ superfluid velocity $\boldsymbol{v}_c(\boldsymbol{x}) \equiv \boldsymbol{j}_c(\boldsymbol{x})/n_c(\boldsymbol{x}) = (\hbar/M)\nabla\varphi(\boldsymbol{x})$

Vortex in BEC

condensate density $: n_c = |\psi|^2$ superfluid velocity : $v_c = (\hbar/M)\nabla\varphi$

Phase φ of the wave function shifts by $2\pi m$ (m : integer) around the vortex core where the wave function vanishes : $\psi = 0$ as a topological defect.

Each vortex can be characterized by *m* (additive group of integers)

Quantized vortex for $m = +1$

Experimental Observation of Vortices

Vortex lattice and its formation in ⁸⁷Rb BEC

Contents

1. Vortices in Bose-Einstein Condensates

- 2. Non-Abelian Vortex in BEC with Spin
- 3. Collision Dynamics of Non-Abelian Vortices
- 4. Non-equilibrium dynamics of Non-Abelian Defects
- 5. Summary

Spinor Bose-Einstein Condensate

There are two ways to trap BECs : magnetic trap and laser trap

magnetic trap : spin degrees of freedom is frozen \rightarrow scalar BEC laser trap : spin degrees of freedom is alive \rightarrow spinor BEC

Hyperfine interaction between electron spin and orbital and nuclear spin cannot be negligible for cold atoms

Spinor Bose-Einstein Condensate

For ⁸⁷Rb ($I = 3/2$, $S = 1/2$, $L = 0$) $\rightarrow F = 1$ or 2

$$
F = 2 \begin{cases} m = 2 \\ m = 1 \\ m = 0 \\ m = -1 \\ m = -2 \end{cases} F = 1 \begin{cases} m = 1 \\ m = 0 \\ m = -1 \\ m = -2 \end{cases}
$$

Multi-component BEC characterized by the quantum number *^m*

Spin 1 : 3-component BEC $\psi = (\psi_1, \psi_0, \psi_{-1})$ Spin 2 : 5-component BEC $\psi = (\psi_2, \psi_1, \psi_0, \psi_{-1}, \psi_{-2})$

Effective Hamiltonian for BEC

$$
H = \begin{cases} \int dx \left[\frac{\hbar^2}{2M} |\nabla \psi_m|^2 + \frac{c_0}{2} n^2 + \frac{c_1}{2} \mathbf{F}^2 \right] & \text{spin-1 BEC} \\ \int dx \left[\frac{\hbar^2}{2M} |\nabla \psi_m|^2 + \frac{c_0}{2} n^2 + \frac{c_1}{2} \mathbf{F}^2 + \frac{c_2}{2} |A_{20}|^2 \right] & \text{spin-2 BEC} \\ \text{number density} & : n(x) = \psi_m^*(x) \psi_m(x) \\ \text{spin density} & : \mathbf{F}(x) = \psi_m^*(x) \hat{\mathbf{F}}_{mn} \psi_n(x) \\ \text{singlet-pair amplitude} & : A_{20} = (-1)^m \psi_m \psi_{-m} \end{cases}
$$

As well as *U*(1) gauge symmetry, *SO*(3) spin rotational ${\sf symmetry}$ is also broken : $G {\, \cong\, } U(1){\times}SO(3)$

Remaining symmetry H can be (non-Abelian) subgroup of $SO(3)$ $\Rightarrow \pi_{1}[\,G/H\,]$ can be non-Abelian \rightarrow non-Abelian vortex appears

Spin-2 BEC

Symmetry of cyclic state

Spin rotations keeping cyclic state invariant form a non Abelian tetrahedral symmetry

Vortices in cyclic state

Interaction between two parallel vortices

Energetically obtained interaction between two parallel vortices

There is also "topological" interaction between vortices

Contents

- 1. Vortices in Bose-Einstein Condensates
- 2. Non-Abelian Vortex in BEC with Spin
- 3. Collision Dynamics of Non-Abelian Vortices
- 4. Non-equilibrium dynamics of Non-Abelian Defects
- 5. Summary

Collision Dynamics of Non-Abelian Vortices

"**Non-Abelian property**" becomes outstanding for collision dynamics of vortices [→]Simulation of Gross-Pitaevskii equation (GPE)

Initial state : two straight vortices & two linked vortices

MK, Y. Kawaguchi, M, Nitta, and M. Ueda, PRL **103**, 115301(2009).

Collision dynamics of vortices

Collision dynamics of vortices

Biaxial nematic state at finite temperature

Biaxial nematic state at finite temperature

 $H{\cong}D_{4}$

Contents

- 1. Vortices in Bose-Einstein Condensates
- 2. Non-Abelian Vortex in BEC with Spin
- 3. Collision Dynamics of Non-Abelian Vortices
- 4. Non-equilibrium dynamics of Non-Abelian Defects
- 5. Summary

Non-equilibrium Dynamics of non-Abelian Vortices

Different non-equilibrium behavior is expected

Equilibrium property

Being independent of whether vortices are Abelian or non-Abelian, system shows the 2nd ordered phase transition

Critical exponent

Difference of the critical exponent shows the difference of topology of the order parameter

Rapid temperature quench from $\,T$ $\!=$ $\!2\,T_{\rm c}$ $\,$ to $\,$ $\,T$ $\!\rightarrow$ $\!0$

Density of vortex line length

Slower dynamics has also been observed for phase ordering of conserved Ising model : $\langle S \rangle = 0$ (total magnetization is fixed to 0) \Rightarrow Decay of domain wall becomes slower in the phase ordering than that in non-conserved Ising model.

Conserved value in this case : **linking number**

Conserved value in this case : **linking number**

Non-commutative vortices cannot pass through each other, behaving like substantial string

Linking number of vortices are conserved

Final State

Sometimes, dynamics stops with finite number of vortices, never relaxing to equilibrium state

Final State

Probability for appearing non-equilibrium final state

Probability depends on the topology (the number of conjugacy class?)

Non-Abelian Cosmic Strings

Similar behavior has been reported in the context of cosmic string

Networking structure of non-Abelian cosmic strings are predicted

P. McGraw, PRD 57, 3317 (1998)

Quantum turbulence

Starting from large-scale vortex loops \Rightarrow Cascade of large to smaller vortices : turbulence

Turbulence of scalar BEC : In large scales, the Kolmogorov spectrum (spectrum in classical turbulence) has been confirmed.

MK and M. Tsubota, PRL 94, 065302 (2005)

Quantum turbulence

Turbulent behavior is strongly affected by topology

Quantum turbulence

Summary

- 1. Non-Abelian defects can be realized vortices in BEC with spin degrees of freedom
- 2. Collision of two defects are completely different between Abelian and non-Abelian vortices (creation of new defect bridging colliding defects)
- 3. Non-Abelian vortices also change various kind of dynamical behavior (especially makes dynamics slower due to tangling of vortices)