Thermodynamic phase transition and quantized vortices in Bose-Einstein condensates

> Michikazu Kobayashi (Kyoto Univ.) Leticia F. Cugliandolo (Paris VI)

- Bose-Einstein condensates at finite temperatures
- Stochastic Gross-Pitaevskii equation and thermodynamic phase transition
- Geometric transition of quantized vortices
- Phase ordering and quantized vortices in quench dynamics

Jan. 18, 2016 "量子渦と非線形波動2016"

Ultracold atomic Bose gas

Trapping atoms

Laser cooling

⁸⁷Rb, ²³Na, ⁷Li, ¹H, ⁸⁵Rb,
⁴¹K, ⁴He, ¹³³Cs, ¹⁷⁴Yb, ⁵²Cr,
⁴⁰Ca, ⁸⁴Sr, ¹⁶⁴Dy, ¹⁶⁸Er

Evaporative cooling

Ultracold atomic Bose gas

Ultracold atomic Bose gas

Phase transition of noninteracting Bose gas

Uniform system

$$T_{\rm c} = \frac{2\pi\hbar^2}{mk_{\rm B}} \left\{ \frac{n}{\zeta(3/2)} \right\}^{2/3} \\ d_{\rm L} = 3 \qquad d_{\rm U} = 4$$

for 3-dim

Condensation (not dynamics)

universality class : spherical model

Harmonically trapped system

$$T_{\rm c} = \frac{\hbar\omega}{k_{\rm B}} \left\{ \frac{N}{\zeta(3)} \right\}^{1/3} \qquad \text{for 3-dim}$$
$$d_{\rm L} = 2 \qquad d_{\rm U} = 3$$

Bose-Einstein condensates at finite temperatures

Thermodynamic phase transition

Critical behaviors of specific heat and correlation length near the critical temperature \rightarrow 2nd ordered phase transition

Effects of interparticle interaction

$$T_{\rm c}^{\rm ideal} = \begin{cases} \frac{2\pi\hbar^2}{mk_{\rm B}} \left\{ \frac{n}{\zeta(3/2)} \right\}^{2/3} & \text{free} \\ \frac{\hbar\omega}{k_{\rm B}} \left\{ \frac{N}{\zeta(3)} \right\}^{1/3} & \text{trapped} \end{cases}$$
$$a: \text{s-wave scattering length}$$
$$\frac{\Delta T_{\rm c}}{T_{\rm c}^{\rm ideal}} = \begin{cases} \frac{c_{\rm f}(na^3)^{1/3}}{R_{TF}} & \text{free} & -1.2 \lesssim c_{\rm f} \lesssim 2.5 \\ \text{trapped} & c_{\rm f} \simeq -1.3 \end{cases}$$

Infinitesimal interaction a changes the universality class for uniform system (a=0 is singular)

 \rightarrow It is difficult to determine $\Delta T_{\rm c}$

Theories for BEC at finite T

- Boltzmann & Gross-Pitaevskii (ZNG theory)
- Stochastic Gross-Pitaevskii eq.
- Complex Ginzburg-Landau eq.
- Classical-field Monte Carlo
- Bogoliubov theory
- Projected Gross-Pitaevskii eq.
- Path-integral Monte Carlo
- Trancated Wigner method
- Complex Stochastic Gross-Pitaevskii eq.

•Simple

•Not widely used

SGP equation and thermodynamic phase transition

JPhysB 38, 4259 (2005)

$$(i\hbar - \gamma)\dot{\psi} = -\frac{\hbar^2}{2M}\nabla^2\psi - \mu\psi + g|\psi|^2\psi + \sqrt{\gamma k_{\rm B}T}\xi$$

- $\psi({m x},t)$: complex field for bosons
- γ : dissipation
- μ : chemical potential

$$g = \frac{4\pi\hbar^2 a}{M}$$
 : coupling constant

 $\xi = \xi_1 + i\xi_2$: Gaussian noise for

 $\langle \xi_a(\boldsymbol{x},t) \rangle = 0 \qquad \langle \xi_a(\boldsymbol{x},t)\xi_b(\boldsymbol{x}',t') \rangle = \delta(\boldsymbol{x}-\boldsymbol{x}')\delta(t-t')\delta_{a,b}$

Unapplicable near the zero temperature due to neglecting the commution relation $[\psi, \psi^{\dagger}] = i\delta$ (complexification of ψ is needed)

JPhysB 38, 4259 (2005)

$$(i\hbar - \gamma)\dot{\psi} = -\frac{\hbar^2}{2M}\nabla^2\psi - \mu\psi + g|\psi|^2\psi + \sqrt{\gamma k_{\rm B}T}\xi$$
$$(i\hbar - \gamma)\dot{\psi} = \lim_{c \to \infty} \frac{\hbar^2}{2M} \left(\frac{\partial_t^2}{c^2} - \nabla^2\right)\psi - \mu\psi + g|\psi|^2\psi + \sqrt{\gamma k_{\rm B}T}\xi$$

$$\Rightarrow \begin{cases} \phi = \frac{\hbar^2}{2Mc^2} \dot{\psi} - i\hbar\psi \\ \dot{\phi} = -\frac{\delta E}{\delta\psi^*} - \frac{2M\gamma c^2}{\hbar^2} (\phi + i\hbar\psi) + \sqrt{\gamma k_{\rm B}T}\xi \\ E = \int d\boldsymbol{x} \left(\frac{\hbar^2}{2M} |\nabla\psi|^2 - \mu|\psi|^2 + \frac{g}{2}|\psi|^4\right) \end{cases}$$

Thermodynamic phase transition and quantized vortices in Bose-Einstein condensates

 $\frac{\partial P}{\partial t}$

 $P = P(\phi, \phi^*, \psi, \psi^*, t)$: probability density functional

Numerical Simulation of SGP eq.

- $\cdot\,$ rescaled by healing length $\hbar/\sqrt{2M\mu}$
- \cdot discretize the space and time

$$(i - \gamma)\Delta\psi_i = \Delta t \left\{ \frac{1}{(\Delta x)^2} \sum_{a=x,y,z} (2\psi_i - \psi_{i+a} - \psi_{i-a}) - \mu\psi_i + g|\psi_i|^2\psi_i \right\} + \sqrt{\gamma T \Delta t}\xi_i$$
$$\gamma = \mu = g = 1$$

Space : 3-dimensional space with periodic boundary condition

Thermodynamic transition

Order parameter

Specific heat

Critical exponents and universality class

Nature of thermodynamic transition for interacting Bose gas \Rightarrow Symmetry breaking of global U(1) phase shift : $\psi \rightarrow \psi e^{i\varphi}$ \Rightarrow Universality class : XY model

Critical exponents and comparison with XY model

		Result	Theory	Free bosons
order parameter	$m \propto (T_{\rm c} - T)^{\beta}$	0.35	9/25	1/2
specific heat	$C \propto T - T_{\rm c} ^{-\alpha}$	-0.015	- 1/50	-1
suscestibility	$\chi \propto T - T_{\rm c} ^{-\gamma}$	1.32	121/100	2
correlation length	$\xi \propto T - T_{\rm c} ^{-\nu}$	0.67	101/150	1
correlation time	$\tau \propto T - T_{\rm c} ^{-\nu z}$	2.1	2.01	2

SGP equation can describe the BEC transition as spontaneous U(1) symmetry breaking

Geometric transition of quantized vortices

Thermodynamic and geometric transitions

Question : Are there geometric transition corresponding to the BEC transition (thermodynamic transition)?

For free bosons : percolation transition of particle worldlines PRE **63**, 026115 (2001)

$$Z = \int Dx_1(\tau) \cdots Dx_N(\tau) \exp\left(-\int_0^{\beta\hbar} d\tau \sum_i \frac{M\dot{x}_i^2}{2} + \mu N\right)$$
$$= \exp\left(\frac{L^3}{\lambda^3} \sum_w w^{-5/2} e^{\mu w/(k_{\rm B}T)}\right) \quad w : \text{ winding number}$$

Thermodynamic and geometric transitions

$$Z = \int Dx_1(\tau) \cdots Dx_N(\tau) \exp\left(-\int_0^{\beta\hbar} d\tau \sum_i \frac{M\dot{x}_i^2}{2} + \mu N\right)$$
$$= \exp\left(\frac{L^3}{\lambda^3} \sum_w w^{-5/2} e^{\mu w/(k_{\rm B}T)}\right) \quad w : \text{ winding number}$$
Probability weight for loop w

Example of particle worldlines

For $\mu = 0$ at $T = T_{\rm c}$, large worldline loops emerge and worldline percolation occurs (critical exponents are same)

Geometric transition of vortex loops

Interacting bosons : discussion of particle worldlines is difficult (It cannot be discussed within SGP equation)

Can we expect the percolation of vortex loops instead at the thermodynamic transition point?

Vortex line density

Vortex snapshots (longest loop is highlighted)

 $T = 0.6 T_{\rm c}$

$$T = 0.8 T_{\rm c}$$

 $T = T_c$

Long loops are generated close to the critical point

Loop length distribution

Loop length distribution

Bump structure at large l for $T=0.99T_c$ and $T=T_c$ \rightarrow Percolating loops (finite-size effect)

→ Vortex percolation occurs at $T_p \equiv 0.98 T_c$ Discrepancy between T_p (geometric transition) and T_c (thermodynamic transition)

Power-law fitting $P(l) \propto l^{-\tau}$ is best at $T=0.98T_{c}$

Discrepancy between geometric and thermodynamic transitions

Discrepancy between geometric and thermodynamic transitions are observed in several interacting models

- SU(2) local gauge field model : $T_{\rm p} \approx 0.994~T_{\rm c}$
- $\mathbb{R}P^2$ model (nematic liquid crystal) : $T_{\mathrm{p}} \approx 0.996 \ T_{\mathrm{c}}$
- Nonlinear O(2) sigma model : $T_{\rm p} \approx 0.992 T_{\rm c}$

Phys. Lett. B **482**, 114 (2000) PRB 72, 094511 (2005)

- Geometric transition of line defects occurs as a precursory phenomenon of thermodynamic transition (both are independent).
- Thermally excited long vortices may be detectable between $T_{\rm c}$ and $T_{\rm p}$

Critical exponents and order parameter

Critical exponents and order parameters

mass parameter :
$$P(l) \propto l^{-\tau} e^{-lm}$$

Number of percolating loops

Critical exponents of order parameters are also consistent with universality of self-seeking random work

Phase ordering and quantized vortices in quench dynamics

Melting dynamics

Temperature quench dynamics

$$t = 0$$
 : ψ for $T = 2T_{c}$ $t > 0$: $T = 0$

Temperature quench dynamics

The same critical exponent as that in the equilibrium at T_p (not T_c) emerges \rightarrow Spontaneous formation of critical percolating state (not critical thermodynamic state) : dynamics is dominated by vortices!

Summary

- We consider the statistical properties such as transition of interacting BEC in equilibrium.
- There are two kinds of transitions: well-known thermodynamic transition and geometric transition of quantized vortices and both are independent.
- Universality class:

XY-model for thermodynamic transition

Self-forcusing random walk for geometric transition

• Geometric critical state emerges in the quench dynamics.

Uniform system vs trapped system

Zaremba-Nikuni-Griffin theory

JLTP 116, 277 (1999)

Noncondensate particle : Boltzmann's eq. $\frac{\partial f}{\partial t} + \frac{\boldsymbol{p} \cdot \nabla f}{M} - 2g \nabla n \cdot \nabla_{\boldsymbol{p}} f = C_{12}(f) + C_{22}(f)$

Condensate particle : GP eq.

$$\frac{\partial n_{\rm c}}{\partial t} + \nabla \cdot (n_{\rm c} \boldsymbol{v}_{\rm c}) = \begin{array}{c} -\Gamma_{12}(f) \\ \text{two components} \end{array}$$

$$M\left(\frac{\partial}{\partial t} + \boldsymbol{v}_{\rm c} \cdot \nabla\right) \boldsymbol{v}_{\rm c} = -g\nabla(n_{\rm c} + 2\tilde{n})$$

Zaremba-Nikuni-Griffin theory

JLTP 116, 277 (1999)

Condensate particle : GP eq. $\frac{\partial n_{\rm c}}{\partial t} + \nabla \cdot (n_{\rm c} \boldsymbol{v}_{\rm c}) = \begin{array}{c} -\Gamma_{12}(f) \\ \text{two components} \\ M\left(\frac{\partial}{\partial t} + \boldsymbol{v}_{\rm c} \cdot \nabla\right) \boldsymbol{v}_{\rm c} = -g\nabla(n_{\rm c} + 2\tilde{n}) \\ \hline \end{array}$ Exchange process : Markov process $(i\hbar - \gamma)\frac{\partial \psi}{\partial t} = -\frac{\hbar^2}{2M}\nabla^2\psi - \mu\psi + g|\psi|^2\psi + \sqrt{\gamma k_{\rm B}T}\xi$

SGP eq. (discrepancy from Gaussian noise is renormalized into γ)

Estimation of γ

Damping of Scissors mode

PRL 86, 3938 (2001)

 $\gamma \propto (na^3)^{1/3}$ from ZNG theory

Loop length distribution

