Vortices and other topological defects in ultracold atomic gases

Michikazu Kobayashi (Kyoto Univ.)

- 1. Introduction of topological defects in ultracold atoms
- 2. Kosterlitz-Thouless transition in spinor Bose gases
- 3. Non-abelian vortices

Feb. 21, 2016 "χ-Mag 2016 Symposium"

Ultracold atomic gases

Trapping atoms

Laser cooling : $\sim \mu K$

Evaporative cooling : ~nK

Ultracold atomic gases

*Lanthanida carias	lanthanum 57	cerium 58	praseodymium 59	neodymium 60	promethium 61	samarium 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	thulium 69	ytterbium 70
Lanthanide Series	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb
	138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
* * Actinide series	actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium
	89	90	91	92	93	94	95	96	97	98	99	100	101	102
	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
	[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]

Bose-Einstein condensation

Experimental image for momentum distribution of Bose atoms (⁸⁷Rb)

Temperature and condensation

JILA, 1995

Similar images are obtained for cooper pairs and bounded pairs (molecules) of Fermi atoms

Comparison with condensed matter systems (electrons and superfluid helium)

	condensed matter	cold atoms
density (m^{-3})	10^{28-31} (dense)	10^{16-23} (dilute)
uniformity	uniform	not uniform (trapped)
microscopic dynamics	ps – ns (rapid)	μ s - ms (slow)
conservation	open system	isolated system

- Perturbation theory is valid for quantitative comparison between microscopic theories and experiments
- Interaction strength is also controllable

Order parameter

Bosons

 $\langle \psi^{\dagger}(x)\psi(x')\rangle \stackrel{|x-x'|}{\longrightarrow} \psi^{*}(x)\psi(x')$: Bose-Einstein condensation

Fermions

$$\begin{split} \langle \psi_{\sigma}^{\dagger}(x)\psi_{\sigma'}^{\dagger}(x)\psi_{\sigma'}(x')\psi_{\sigma}(x')\rangle & \stackrel{|x-x'|}{\longrightarrow} \Delta^{*}(x)\Delta(x'): \text{ Cooper pairing} \\ \psi(x) &= |\psi(x)|e^{i\phi(x)}: \text{ spontaneous symmetry breaking} \\ & \text{ for } U(1)\text{-phase shift} \\ \rho(x) &= |\psi(x)|^{2}: \text{ particle density} \\ \boldsymbol{v}(x) &= \frac{\hbar}{M}\nabla\phi(x): \text{ superfluid velocity} \end{split}$$

Quantized vortex

$$\begin{split} \psi(x) &= |\psi(x)| e^{i\phi(x)} \\ \rho(x) &= |\psi(x)|^2 \text{ : particle density} \\ \boldsymbol{v}(x) &= \frac{\hbar}{M} \nabla \phi(x) \text{ : superfluid velocity} \end{split}$$

Vortex appears as topological defect for U(1) phase shift (density $\rho(x)$ vanishes)

Vortex lattice formation

Simulation of the non-linear Schrödinger equation

Ф

 $-\pi$

- Phase vortices appear in the outside of the condensate
- Condensate is squashed
- Vortices excite the surface of the condensate
- Vortices enter the condensate
- Triangular vortex lattice is formed

Vortices and other topological defects in ultracold atomic gases

 π

Vortex lattice formation

Vortex lattice in ⁸⁷Rb BEC

K. W. Madison et al. PRL 86, 4443 (2001)

Quantum turbulence

Precession rotation of condensation

PRA 76, 045603 (2007)

PRL 103, 045301 (2009)

Vortices are not lattice but tangled (quantum turbulence)

Other method to excite vortices

Nature 462, 628 (2009)

No centrifugal force \rightarrow Large number of vortices can be excited \rightarrow Toward quantum Hall state

rapid temerature quench

Nature **455**, 948 (2008)

- Phase imprinting
- Interaction with Laguerre-Gaussian beam

Internal degrees of freedom

- Multi-component condensate
- Spinor condensate

type of particle trap	spin degrees of freedom	type of condensate
magnetic trap	frozed	scalar condensate
optical trap	alived	spinor condensate

Hyperfine coupling of nuclear and electron spins : F = I (nuclear spin) + S (electron spin) + L (electron orbital)

⁸⁷ Rb, ²³ Na ⁷ Li, ⁴¹ K	F = 1, 2
⁸⁵ Rb	F = 2, 3
¹³³ Cs	F = 3, 4
⁵² Cr	S = 3, I = 0

Spinor condensate

⁸⁷Rb
$$(I = 3/2, S = 1/2, L = 0) \rightarrow F = 1, 2$$

F = 1 experiment

Mean-field theory for spinor condensates

order parameter :
$$\psi = (\psi_F \quad \psi_{F-1} \quad \cdots \quad \psi_{-F})$$

spin-1 : $H = H_0 + \frac{2\pi\hbar^2}{M} \int dx \; (a_0\rho^2 + a_1S^2)$
spin-2 : $H = H_0 + \frac{2\pi\hbar^2}{M} \int dx \; (a_0\rho^2 + a_1S^2 + a_2|A_{20}|^2)$

1-body part

$$H_0 = \int d\mathbf{x} \left[\sum_{m=-F}^{F} \left\{ \frac{\hbar^2}{2M} |\nabla \psi_m|^2 + (q_1 m + q_2 m^2 + V) |\psi_m|^2 \right\} \right]$$

- q_1 : linear-Zeeman coefficient
- q_2 : quadratic-Zeeman coefficient
- V: 1-body external trapping potential

Mean-field theory for spinor condensates

order parameter :
$$\psi = (\psi_F \quad \psi_{F-1} \quad \cdots \quad \psi_{-F})$$

spin-1 : $H = H_0 + \frac{2\pi\hbar^2}{M} \int dx \; (a_0\rho^2 + a_1S^2)$
spin-2 : $H = H_0 + \frac{2\pi\hbar^2}{M} \int dx \; (a_0\rho^2 + a_1S^2 + a_2|A_{20}|^2)$

$$\begin{split} a_{0,1,2} &: s\text{-wave scattering length} \\ \rho &= \psi^{\dagger}\psi : \text{ density} \\ \boldsymbol{S} &= \psi^{\dagger}\hat{\boldsymbol{S}}\psi : \text{ spin density} \\ A_{20} &= \sum_{m=-F}^{F} (-1)^{m}\psi_{m}\psi_{-m} : \text{ singlet-pair amplitude} \\ & \text{ (expectation value of unitary operator)} \end{split}$$

Ground states for spin-1 condensates without Zeeman field

|S| = 1

Representation with spherical-harmonic function

Vortex in Ferromagnetic phase

Vortex in Ferromagnetic phase

Double winding vortex is continuously transformed to uniform state (phase imprinting)

 $ightarrow \mathbb{Z}_2$ vortex

PRA **89**, 190403 (2002) PRL **93**, 160406 (2004)

Vortex in polar phase

Mass circulation around the vortex is half of that of scalar condensate (half-quantized vortex)

Monopole in polar phase

't Hooft-Polyakov monopole in Polar phase

 $\psi = \frac{1}{\sqrt{2}} \begin{pmatrix} -e^{-i\phi}\sin\theta\\\cos\theta\\e^{i\phi}\sin\theta \end{pmatrix}$

Monopole cannot exist in Ferromagnetic phase

2D skyrmion in polar phase

$$\psi = \frac{1}{\sqrt{2}} \begin{pmatrix} -e^{-i\phi} \sin f(r) \\ \cos f(r) \\ e^{i\phi} \sin f(r) \end{pmatrix}$$
$$f(0) = 0 \qquad f(r \to \infty) = \pi$$

Experimentally created by Laguerre-Gaussian beam

Vortex-skyrmion combined state (metastable)

$$\psi = \frac{1}{\sqrt{2}} \begin{pmatrix} -e^{-2i\phi} \sin f(r) \\ e^{-i\phi} \cos f(r) \\ \sin f(r) \end{pmatrix}$$

Interaction between 2D skyrmion and halfquantized vortex

Skyrmion rotates around the half-quantized vortex

S. Kobayashi, et al. Nucl. Phys. B 856, 577 (2012)

Interaction between 2D skyrmion and halfquantized vortex

Skyrmion rotates around the half-quantized vortex

Skyrmion charge is inverted when skyrmion rotates around the half-quantized vortex

 $\rightarrow \mathbb{Z}_2$ skyrmion

S. Kobayashi, et al. Nucl. Phys. B 856, 577 (2012)

Short summary

Hopfion

Spinor condensates induce a variety of topological defects

	π_1	π_2	π_3
Polar	half-quantized vortex	monopole $2{\sf D}~{\mathbb Z}_2$ skyrmion	Hopfion
Ferro	\mathbb{Z}_2 vortex		3D skyrmion

• Arbitrary 2 rings form the Hopf link

Phys. Rev. Lett. 100 180403, (2008)

Spin-1 condensates under quadratic Zeeman field

Kosterlitz-Thouless transition in 2D system

Relationship between properties of vortex and KT transition?

2D system can be created by using optical standing wave

Monte-Carlo simulation $\langle f \rangle = \left(\prod_{m=-1}^{1} \int D\psi_m \ D\psi_m^* \right) \\
\times f[\psi_m, \psi_m^*] e^{-H/T}$

Important value : helicity modules for phase shift and spin rotation

Kosterlitz-Thouless transition in 2D system

$$H = \int dx \sum_{m=-1}^{1} \left(\frac{\hbar^2}{2M} |\nabla \psi_m|^2 + q_2 m^2 |\psi_m|^2 \right) + \frac{1}{2} (g_0 \rho^2 + g_1 S^2)$$

Intermediate state
Spin vortex
Phase and spin vortices exist
independently (phase-spin separation)

Kosterlitz-Thouless transition in U(1) polar state

 $T_{\rm KT}$ is obtained from Binder cumulant

KT transition is completely same as scale condensate : $\Delta \Upsilon_{\phi}/T_{
m KT} \simeq 1/\pi$

Kosterlitz-Thouless transition in 2D system

Kosterlitz-Thouless transition in intermediate state

2-step KT transition occurs at different temperatures for phase shift and spin rotation due to phase-spin separation

Universal jump is the same as that for the scalr condensate : $\Delta\Upsilon_{\phi}/T_{
m KT}\simeq 1/\pi$

For zero quadratic Zeeman field

$$H = \int d\boldsymbol{x} \, \sum_{m=-1}^{1} \frac{\hbar^2}{2M} |\nabla \psi_m|^2 + \frac{1}{2} (g_0 \rho^2 + g_1 \boldsymbol{S}^2)$$

Ferromagnetic : \mathbb{Z}_2 vortex Polar : half-quantized vortex

Properties of vortices changes discretely between q>0 and q=0

Kosterlitz-Thouless transition in ferromagnetic state

Due to strong finite-size effect, we cannot judge whether KT transition occurs in the thermodynamic limit

KT transition for \mathbb{Z}_2 vortex has not been solved yet (2D antiferromagnetic Heisenberg model).

Kosterlitz-Thouless transition in polar state

KT transition for phase shift is clear, but that for spin rotation in unclear due to strong finite-size effect (spin part has \mathbb{Z}_2 charge)

Universal jump is 2 times larger than that for the scalr condensate due to half circulation of vortex : $\Delta \Upsilon_{\phi}/T_{\rm KT} \simeq 2/\pi$

Short summary

Vortex properties can be seen in 2D KT transition

Ground states for spin-2 condensates

Vortices in cyclic state

Collision dynamics of vortices

Collision dynamics of vortices

Knots for non-Abelian vortex

- New kind of topological structure not classified by Homotopy and not suffered from Derrick's theorem
- Vortex knot breaks chiral symmetry with finite helicity

Ordering dynamics after temperature quench

Initial state : fully randomized state surrounded (high temperature) with low-energy uniform ground state (heat reservoir)

Ordering dynamics after temperature quench

Large scaled knotted vortex structure is remained with finite helicity \rightarrow spontaneous breaking of chiral symmetry with vortex knot

Short Summary

- Vortices becomes non-Abelian for spin-2 spinor condensate (cyclic state)
- Non-Abelian vortices enable new topological defect : vortex knots
- Vortex knots have finite helicity (chirality) and metastable not suffering from Derrick's theorem
- Large scaled vortex knotted structure (chirality) is expected after the temperature quench with spontaneous chiral symmetry breaking

Thank you very much for your attention