

ヘリシティとは

$\begin{array}{l}P: \mathsf{Parity} \ R: \mathsf{rotation} \ T: \mathsf{time \ reversal}\\P \mathsf{broken} \to \mathcal{D} \mathcal{T} \supset \mathcal{D} \mathcal{T} \mathcal{T} & P \mathsf{broken}\\R \times T \mathsf{unbroken} \end{array} \rightarrow \mathcal{N} \mathcal{U} \mathcal{D} \mathcal{T} \mathcal{T} \end{array}$

ヘリシティとは

ボース・アインシュタイン凝縮と量子渦 スカラーBECとヘリシティ スピノルBECとヘリシティ まとめ

ボース・アインシュタイン 凝縮と量子渦

超流動ヘリウム

冷却原子気体 ボース・アインシュタイン凝縮

from Wikipedia

流体中の回転的な流れは量子渦が担っている
quantized circulation:
$$\kappa = \oint \mathbf{v} \cdot d\mathbf{l} = h/M$$

• 量子渦まわりの循環は量子化される
• 渦芯は細い (4He: ~Å BEC:~0.1µm)
 $U(1)$ 対称性の破れ (ボース凝縮) による
 $\pi - \mathcal{I} -$

量子渦の生成

Yarmchuk et. al. PRL **43** 214 (1979)

K. W. Madison et al. PRL **86**, 4443 (2001)

スピン流から質量流への 変換 (phase imprint)

Y. Shin, et al. PRL 93, 160406 (2004)

スカラーBECとヘリシティ

ヘリシティは量子渦に局在する

(phonon)

$$H = \int d^{3}x \, \boldsymbol{v} \cdot (\nabla \times \boldsymbol{v})$$

$$= \frac{\kappa}{2\pi} \int d^{3}x \, \boldsymbol{v} \cdot \hat{\boldsymbol{z}} \delta(\boldsymbol{r}_{xy} - \boldsymbol{r}_{0}(\boldsymbol{z}))$$

$$= \frac{\kappa}{2\pi} \int d\boldsymbol{z} \lim_{\boldsymbol{r} \to \boldsymbol{r}_{0}} v_{\boldsymbol{z}}(\boldsymbol{r})$$

$$= \left(\frac{\kappa}{2\pi}\right)^{2} \int d\boldsymbol{z} \lim_{\boldsymbol{r} \to \boldsymbol{r}_{0}(\boldsymbol{z})} \partial_{\boldsymbol{z}} \phi(\boldsymbol{r})$$

$$= \left(\frac{\kappa}{2\pi}\right)^{2} \left\{\phi(\boldsymbol{r}_{0}(\boldsymbol{z}_{+})) - \phi(\boldsymbol{r}_{0}(\boldsymbol{z}_{-}))\right\}$$

ヘリシティは渦芯に沿った渦芯近傍の 位相変化量に相当する

ヘリシティ・再結合・ケルビン波

ヘリシティ・再結合・ケルビン波

ネットなヘリシティからケルビン波が励起され、 再結合を通して渦のヘリシティが増加する (Donnelly-Glaberson instability)

M. Tsubota et. al PRL 90, 205301 (2003)

ヘリシティ・再結合・ケルビン波

ネットなヘリシティからケルビン波が励起され、 再結合を通して渦のヘリシティが増加する (Donnelly-Glaberson instability)

M. Tsubota et. al PRL 90, 205301 (2003)

スピノルBECとヘリシティ

原子のスピン自由度が生きているような原子気体BECを考える

超微細相互作用により核と電子の スピンが結合する(F = I + S + L)

$$S = 1/2$$

⁸⁷ Rb, ²³ Na, ⁷ Li, ⁴¹ K	$F{=}1,2$
⁸⁵ Rb	$F{=}2,3$
¹³³ Cs	$F{=}3,4$
⁵² Cr	S=3,I=0

スピノルBEC

⁸⁷Rb
$$(I = 3/2, S = 1/2, L = 0) \rightarrow F = 1, 2$$

F = 1 experiment

スピノルBECの基底状態と対称性

スピノルBECのトポロジカル欠陥

スピノルBECでは量子渦だけでなく、高次のホモトピーで分類できる トポロジカル欠陥が存在する。

		π_1	π_2	
スピン1	強磁性	\mathbb{Z}_2 渦	-	スカーミオン
	ポーラー	半整数量子渦	モノポール	ホッピオン
	強磁性	\mathbb{Z}_4 渦	-	スカーミオン
スピン2	ネマティック	半整数量子渦	モノポール	ホッピオン
		1/4渦	-	スカーミオン
	サイクリック	非可換量子渦	-	スカーミオン

高次のホモトピーで特徴づけられる欠陥は、トポロジカルに安定なヘリシ ティを持つ→トポロジカルチャージがヘリシティで特徴づけられる

スピノルBECのトポロジカル欠陥

スピノルBECでは量子渦だけでなく、高次のホモトピーで分類できる トポロジカル欠陥が存在する。

		π_1	π_2	π_3
スピン1	強磁性	\mathbb{Z}_2 渦	_	スカーミオン
	ポーラー	半整数量子渦	モノポール	ホッピオン
スピン2	強磁性	\mathbb{Z}_4 渦	-	スカーミオン
	ネマティック	半整数量子渦	モノポール	ホッピオン
		1/4渦	-	スカーミオン
	サイクリック	非可換量子渦	-	スカーミオン

ポーラー状態におけるホッピオン

Y. Kawaguchi et. al. PRL 100 180403, (2008)

- 液晶のブルー相で実現されるホッピオンと同じ構造
- ・質量流ではなく、スピン流に対するスピンヘリシティ (=トポロジカルチャージ=Linking number)を持つ
- トポロジカルに安定(ケルビン波等に崩壊しない)

スピノルBECのトポロジカル欠陥

2種類の量子渦循環を用いることによって、トポロジカルに 安定なヘリシティが得られる→vorton

		π_1	π_2	π_3
スピン1	強磁性	\mathbb{Z}_2 渦	-	スカーミオン
	ポーラー	半整数量子渦	モノポール	ホッピオン
スピン2	強磁性	\mathbb{Z}_4 渦	_	スカーミオン
	ネマティック	半整数量子渦	モノポール	ホッピオン
		1/4渦	-	スカーミオン
	サイクリック	非可換量子渦	_	スカーミオン

2成分BECにおけるvorton

$$\boldsymbol{v} = \frac{\rho_A \boldsymbol{v}_A + \rho_B \boldsymbol{v}_B}{\rho_A + \rho_B} \Rightarrow \int d^3 x \, \boldsymbol{v} \cdot (\nabla \times \boldsymbol{v}) \neq 0$$

スピノルBECのトポロジカル欠陥

非可換量子渦による、第3のトポロジカルに安定なヘリシティがある

		π_1	π_2	π_3
スピン1	強磁性	\mathbb{Z}_2 渦	_	スカーミオン
	ポーラー	半整数量子渦	モノポール	ホッピオン
スピン2	強磁性	\mathbb{Z}_4 渦	-	スカーミオン
	ネマティック	半整数量子渦	モノポール	ホッピオン
		1/4渦	_	スカーミオン
	サイクリック	非可換量子渦	_	スカーミオン

サイクリック状態における非可換量子渦

order-parameter manifold : $\frac{U(1) \times SO(3)}{T}$ 正四面体回転群 スピノル・ボース・アインシュタイン凝縮とヘリシティ

サイクリック状態における非可換量子渦

サイクリック状態における非可換量子渦

非線形シュレディンガー方程式における渦の衝突ダイナミクス ^{可換なペア} 非可換渦なペア

新しいトポロジカル構造:結び目渦

向き付き三葉結び目 (parity broken)

放出して崩壊)

A, *B*, *C* が非可換

ヘリシティが結び目のlinking numberに等しい
 非可換渦にはlinking numberが保存量として存在する

Knotted vortex in water

D. Kleckner and W. T. M. Irvine, Nature Phys 9, 253 (2013)

量子流体中では、渦に局在したヘリシティが存在する

- スカラーBEC: ヘリシティは再結合を通してケルビン波へと崩壊し、 非保存量である
- スピノルBEC: 3次元構造の欠陥(π₂, π₃で分類される欠陥、vorton)に 加え、非可換量子渦の結び目がトポロジカルに安定な構造となり、 ヘリシティによって特徴づけられる。
- 非可換量子渦はラング渦の生成によって、ヘリシティのケルビン波への崩壊が阻止され、非可換量子渦の結び目の不変量(linking number)がヘリシティとなる。

量子乱流とヘリシティ

量子渦によって構成される量子乱流

These waves have never been directly **visualized**

Lathrop group from Youtube

PRL 103, 045301 (2009)

量子乱流とヘリシティ

Spin-2 BECの基底状態

Vortices and other topological defects in ultracold atomic gases

渦の結び目不変量

winding number of vortex : $\Rightarrow \int d^2x \, \nabla imes m{v} \in \mathbb{Z}$: circulation

linking number of non-Abelian vortex : $\Rightarrow \int d^3x \, \boldsymbol{v} \cdot (\nabla \times \boldsymbol{v}) \in \mathbb{Z}$: helicity

結び目不変量の逆カスケード

⇒乱流中に非可換量子渦の大規模 な結び目構造が形成される

 $E(k) \propto k$ –7/3

現時点で、低波数領域の冪の正確な値は決定できない ⇒さらに統計精度を高める必要がある

乱流状態では渦の大規模なネットワーク構造 が期待される 10^{6} 10^{5} 10^{4} 10^{3} $E_{\rm kin}(k)$ 10^{2} scale of energy injection 10^{1} $\begin{array}{c} E_{\rm kin}^{\rm i}(k) & \longrightarrow \\ \propto k^{-5/3} & \longrightarrow \end{array}$ 10^{0} $\propto k^{-7/3}$ ----- 10^{-1} 10^{-1} 10^{-2} 10^{0} 10^{1} k

外力よりも大きなスケールにおける冪的振る舞い (渦のネットワーク形成による逆力スケード?) 指数:-5/3~-7/3 (カスケードする物理量に依存)

Large scaleにおける保存量:エネルギー $\Rightarrow -5/3$ 渦の結び目不変量 $\Rightarrow -7/3$